Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Of bio-hairpins and polymer-spaghetti

By R&D Editors | October 9, 2014

3-D confocal microscopic image of fluorescently labelled F-actin filaments, one of which is fully analyzed, in an entangled solution of unlabelled F-actin subjected to shear flow. Image: Forschungszentrum JülichWhen a basically sturdy material becomes soft and spongy, one usually suspects that it has been damaged in some way. But this is not always the case, especially when it comes to complex fluids and biological cells. By looking at the microscopic building blocks—known as “filaments”—of biopolymer networks, researchers from Forschungszentrum Jülich, Germany and the FOM Institute AMOLF in the Netherlands, revealed that such materials soften by undergoing a transition from an entangled spaghetti of filaments to aligned layers of bow-shaped filaments that slide past each other. This finding may explain how other biological as well as man-made filaments flow, which could aid, among other things, the search for renewable alternatives to replace oil-based polymers. The results are reported in Nature Communications.

In our cells, which contain biopolymer filaments, active flow due to molecular motor proteins can be observed. Since biopolymer filaments are neither fully flexible nor fully rigid like a rod, they are customarily called “semiflexible” polymers. The viscosity of solutions of semiflexible polymers decreases dramatically at high shear rates a measure of the velocity gradient or the speed differences within a fluid. The effect is called ‘shear-thinning’. The flow behaviour of ketchup is a widely known example for this physical phenomenon.

In a collaboration between Prof. Pavlik Lettinga’s group in Jülich and Prof. Gijsje Koenderink’s group at AMOLF, researchers were able to appreciate the full 3D-shape of the filaments while the system is in flow, providing a wealth of information not previously available. They found that filaments have an irregular configuration and are intricately entwined with each other while at rest, but that they form hairpin-like structures and detach themselves completely from one another when in flow. The filaments can then freely slide over each other, which causes the dramatic shear-thinning of semiflexible polymer solutions.

“We now have a better understanding of why many systems can flow when you distort them, but behave like a solid when you don’t,” explains Lettinga from the Jülich Institute of Complex Systems. “In industry, flexible polymers are currently used in the main, but with increasing oil prices, industry is looking for alternatives. Many natural systems such as cellulose and amyloids are relatively stiff. Knowledge of the behaviour of such systems aids efficient processing and energy saving. With this information, it is now possible to apply a bottom-up approach to the design of a broad range of products.”

The scientists set themselves the task of studying tiny biopolymer filaments from a network found in muscle cells whilst set in flow. For this purpose, they marked individual filaments with a fluorescent dye and subsequently observed them using a counter-rotating device under a confocal microscope.

“The results also help us to understand certain biological processes, such as cytoplasmic flow,” says Koenderink from AMOLF. “Cytoplasmic flow occurs in many embryos and in large plant cells. Actin filaments or microtubules, together with molecular motor proteins, spontaneously generate flows, which aid in the delivery of organelles and nutrients. Our results provide insight into the microstructural changes that occur during flow.”

Furthermore, the methodology opens up the possibility of looking at more complex systems. For example, the researchers plan to study the basic mechanisms of blood clotting, which is an interplay between the network formation of fibrins and red blood cells.

Original Publication: Inka Kirchenbuechler, Donald Guu, Nicholas A. Kurniawan, Gijsje H. Koenderink, and M. Paul Lettinga. Direct visualization of flow-induced conformational transitions of single actin filaments in entangled solutions. Nature Communications (2014), DOI: 10.1038/ncomms5060

Source: Forschungzentrum Juelich

Related Articles Read More >

New Ultrathin Capacitor Could Enable Energy-Efficient Microchips
Advanced fluoropolymer materials excel in harsh oil recovery environments
R&D 100 winner of the day: RFID Yarn: Overcomer for 5 Major Durability Test
R&D 100 of the day: Autonomous Self-Healing Sealant
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars