Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Paper-like Batteries Aid Space Exploration, Superconductor Secrets Unveiled, Special Compounds Crush the Competition: ICYMI

By R&D Editors | April 4, 2016

Gurpreet Singh, associate professor of mechanical and nuclear engineering at Kansas State University, and his research team have developed a paperlike battery electrode using silicon oxycarbide glass and graphene.An engineer at Kansas State University has created a paper-like battery that could develop better tools for space exploration or unmanned aerial vehicles. The battery electrode was made using silicon oxycarbide-glass and graphene, and it’s over 10 percent lighter than other battery electrodes and features close to 100 percent cycling efficiency for more than 1,000 charge discharge cycles. It’s also made from inexpensive materials that are byproducts of the silicone industry, and it functions at temperatures as low as minus 15 C which can accommodate several aerial and space applications. 

Superconducting materials have the characteristic of letting an electric current flow without resistance. The study of superconductors with a high critical temperature discovered in the 1980s remains a very attractive research subject for physicists. Indeed, many experimental observations still lack an adequate theoretical description. Researchers from the University of Geneva in Switzerland and the Technical University Munich in Germany have managed to lift the veil on the electronic characteristics of high-temperature superconductors. Their research shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones as was postulated for the past 30 years.

Chunks of this sodium-based compound (Na2B12H12) (left) would function well in a battery only at elevated temperatures, but when they are milled into far smaller pieces (right), they can potentially perform even in extreme cold, making them even more promising as the basis for safer, cheaper rechargeables. Image: Tohoku University, JapanFinally, scientists at NIST have chemically modified and pulverized a promising group of compounds in order to develop safer, solid-state rechargeable batteries. These compounds are stable solid materials that would not pose the risks of leaking or catching fire typical of traditional liquid battery ingredients and are made from commonly available substances. The researchers have sought to enhance the compounds’ performance further in two key ways: Increasing their current-carrying capacity and ensuring that they can operate in a sufficiently wide temperature range to be useful in real-world environments.

 

Related Articles Read More >

TSMC’s N3P hits mass production, with N3X customer sampling slated for Q3–Q4 2025a
7 major R&D developments this week: Tariff uncertainty persists, Pfizer sells campus, Scania acquires Northvolt unit
While Trump tariffs spare phones/PCs, R&D could faces GPU cost pressures
Why IBM predicts quantum advantage within two years
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE