Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Patterning of Tissue Architecture & Cell Identity

By Institute of Neural Regeneration & Tissue Engineering | October 11, 2016

Three-dimensional culture of stem cells in biomaterials has recently enabled the formation of complex cellular structures and miniature organoid tissues, including tissues resembling brain, spinal cord, retina, liver, and kidney. In order to improve this technology further, research published in the Journal of Tissue Engineering describes new designs for unique biomaterial scaffolds that incorporate patterned architectures and regional compartments of signaling factors that can more intricately guide tissue development. These designs enable more comprehensive control over cell fate and tissue architecture, and also establish a platform for studying the effects of concentration gradients of a variety of signaling factors on tissue development.

The ability to form specific molecular concentration gradients within tissue cultures provides several unique advantages and capabilities. Dr. Richard J. McMurtrey, author of the work, said, “The compartments of signaling factors that are designed into the synthetic tissue constructs can form concentration gradients as a result of natural diffusion behaviors, and these gradients can control numerous processes like stem cell differentiation, regional identity, axis patterning, and tissue architecture.” As examples, Dr. McMurtrey describes how regional gradients of sonic hedgehog protein (SHH), wnt protein (WNT), bone morphogenic protein (BMP), fibroblast growth factor (FGF), retinoic acid (RA), and reelin protein (RELN) can influence the formation of the nervous system in both innate neural tissue and in three-dimensional (3D) organoids. By separating factors into localized molecular gradients, researchers can mimic developmental cues and can thereby pattern ventral/dorsal and rostral/caudal aspects of the organoid tissue.

Restoring function in damaged neural tissue is likely to require stem cells that can go through similar developmental processes as they did during early development in the womb. “The ability to replicate natural developmental processes in 3D culture of patient-derived stem cells is essential for creating targeted regeneration of specific areas of the brain and spinal cord,” said Dr. McMurtrey. “Although there is much we have discovered about how neurodevelopment occurs, there is still much more to learn about all the detailed and complex neurodevelopmental processes that form the vast array of regions, structures, and functions in the brain and spinal cord, and these new tissue designs will help expand our capabilities to study and control these complex processes.”

Importantly, the tissue construct designs presented in the paper also enable an array of important investigations in tissue development, disease mechanisms, drug toxicologies, as well as regenerative medicine applications. The combination of biomaterials with stem cells can provide many advantages over stem cell applications alone, including improved cell survival, improved guidance of differentiation processes, improved cellular integration into host tissue, improved control of tissue patterning, and improved migration and sprouting of neural connections. Nevertheless, much research still remains to be done on the optimal combinations of biomaterials, signaling factors, and scaffolding architectures needed to optimally prepare cells for transplantation and integration into specific tissues of the body, and it is hoped that this technology will someday provide capabilities to guide reconstruction of neural architecture in the human nervous system. Dr. McMurtrey stated, “It is a privilege to work on research that is both fascinating and imperative for treating neurological injuries that we simply cannot heal today.”

Related Articles Read More >

professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
Health-related innovation in Morocco highlighted by resident inventor patenting activity
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE