Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Peratech working on “nose in clothes” for wearable electronics

By R&D Editors | March 18, 2013

QTC VOC sensor on textile (the black tip)Touch technology company is working with the London College of Fashion, University of the Arts London to develop wearable electronics that use Peratech’s QTC sensors. This is a three and a half year PhD research project funded by an EPSRC ICASE award to explore the needs base and applications for wearable technology bringing together the expertise of industry and academe in a highly creative way.

“We are very excited to be involved in this project,” said David Lussey, Peratech’s CTO. “Our QTC materials have already been used to provide switches in clothing for a number of years and so we know that it can withstand the rigors of being worn and washed. This project combines technology, design and user needs to work out how this growing area of wearable technology can be developed.”

The core of QTC technology is that QTC materials change their resistance when a force is applied such as pressure. Printing QTC inks on to textiles enables simple on/off switches to be created but, more interestingly, because the resistance changes proportionally to the amount of force applied, areas of the cloth can become touch sensitive or can be made to recognise pressure inputs.

“There are already glasses that provide computer displays,” explained David Lussey, “but they lack a simple way to input and interact with them. With our technology, you could print a keyboard onto a sleeve or onto the back of a glove and link it via Bluetooth to the glasses. Or even a rectangle of touch sensitive QTC material to act as a touchpad and respond to multi-touch gesture inputs of pinch, stretch, flick, etc. which are familiar from smartphones and tablets.”

Apart from being touch sensitive, QTC materials can also detect the presence of volatile organic compounds (VOCs). Its printable QTC E-nose sensors work by the QTC material expanding in the presence of VOCs which changes the resistance of the QTC material giving very rapid response and recover times along with a high level of sensitivity. Different formulations can be made according to the specific VOC to be detected so that low cost warning sensors and the associated electronics can be printed onto textiles to provide clothing that monitors the wearer for signs of illness, fatigue or exposure to dangerous chemicals.

“Apart from the obvious military applications of remote monitoring of personnel for stress and chemical attack, these sensors could be incorporated into clothing for everyday health monitoring as certain VOCs can be early indicators of health issues,” explained David Lussey. “What is exciting is that the ability to print active and passive components is really taking off so that these combine with our QTC technology so that everything needed to print complete electronic circuits can be done at the same time directly onto flexible substrates such as films, papers and textiles.”

Source: Peratech

Related Articles Read More >

Marine-biodegradable polymer is as strong as nylon
Unilever R&D head lifts lid on AI, robots and beating the ‘grease gap’
First CRISPR-edited spider spins red fluorescent silk
KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE