Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Photonics experts build world’s most sensitive thermometer

By R&D Editors | June 5, 2014

A computer generated image of the Light Thermometer. A slight difference in the speed of the green and red light can tell us the temperature. Image: Dr. James Anstie, IPAS and School of Chemistry and Physics, University of Adelaide.Photonics researchers at the University of Adelaide in South Australia have created a thermometer three times more precise than any existing device, able to measure temperature to 30 billionths of a degree.

The thermometer injects two colours of light (red and green) into a highly polished crystalline disk. The two colours travel at slightly different speeds in the crystal, depending on the temperature of the crystal.

“When we heat up the crystal we find that the red light slows down by a tiny amount with respect to the green light,” project lead Professor Andre Luiten says.

“By forcing the light to circulate thousands of times around the edge of this disk in the same way that sound concentrates and reinforces itself in a curve in a phenomena known as a “whispering gallery”—as seen in St Paul’s Cathedral in London or the Whispering Wall at Barossa Reservoir—then we can measure this minuscule difference in speed with great precision.”

The technique could also be redesigned for ultra-sensitive measurements of other things such as pressure, humidity, force or searching for a particular chemical.

Professor Luiten says he believes it is the best measurement ever made of temperature—at room temperature. It is possible to make more sensitive measurements in low temperatures close to absolute zero.

The device uses slight changes in the speed of colored light to tell the temperature.“We’ve been able to measure temperature differences to 30 billionths of a degree in one second. To emphasise how precise this is, when we examine the temperature of an object we find that it is always fluctuating,” says Professor Luiten.

“We all knew that if you looked closely enough you find that all the atoms in any material are always jiggling about, but we actually see this unceasing fluctuation with out thermometer, showing that the microscopic world is always in motion.”

“Being able to measure many different aspects of our environment with such a high degree of precision, using instruments small enough to carry around, has the capacity to revolutionise technologies used for a variety of industrial and medical applications where detection of trace amounts has great importance,” Professor Luiten says.

Nano-Kelvin Thermometry and Temperature Control: Beyond the Thermal Noise Limit

Source: The Lead, University of Adelaide

 

Related Articles Read More >

2025 R&D layoffs tracker tops 92,000
Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
Five cases where shaky science snowballed into public confusion
Caltech, Fermilab, and collaborators test quantum sensors for future particle physics experiments
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE