Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Portable Paper Sensor Monitors Sunburn Risk

By R&D Editors | May 27, 2016

Summer is around the corner — time for cookouts and sunbathing. But too much sun can result in sunburn, which is the main cause of skin cancer. Because the time it takes to get burned depends on many factors, it is not easy to tell when to seek shade. To help people stay safe, researchers report in ACS Sensors the development of a paper-based sensor for monitoring sun exposure given different skin tones and sunscreen levels.

Most currently available UV sensors require high-tech gadgets to operate, such as smartphones or wearable devices. Recently, single-use, disposable sunburn sensors have come onto the market. However, some of these sensors use substances that are potentially harmful to people or the environment. Others are only good for specific skin tones. Thus, J. Justin Gooding and colleagues set out to create a disposable sunburn sensor that is inexpensive, is composed entirely of safe and benign materials and can be easily calibrated to take into account different skin tones and SPFs of sunscreens that are applied on the skin.

The group created a sun-exposure sensor by inkjet printing titanium dioxide, a nontoxic and inexpensive compound, and a food dye on paper. When enough UV radiation hits the sensor, titanium dioxide causes the dye to change color, warning people to get out of the sun or apply more sunscreen. To adjust the sensor for various skin tones and sunscreen use, the group added UV neutral density filters that can speed up or slow down the discoloration time of the sensor.

The researchers acknowledge funding from the Australian Research Council Centres of Excellence funding scheme.

Source: American Chemical Society 

Related Articles Read More >

R&D 100 winner of the day: BLK247 from Leica Geosystems, part of Hexagon
Sandia Labs shows advanced wayfinding tech could finally become compact, fieldable
CAL Analytics’ research to detect and track lower altitude aircraft in Ohio
Next-generation remote monitoring solution supports uncompromised sample safety and integrity
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars