Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Preventing Liver Failure from Painkiller Overdose

By R&D Editors | February 5, 2014

University of Adelaide researchers have identified a key step for the future prevention of liver failure resulting from taking too much of the everyday painkiller paracetamol, also known as acetaminophen.
 
Published in the Proceedings of the National Academy of Sciences (PNAS), the study pinpoints a target for new treatments to prevent the potentially lethal consequences of paracetamol overdose.
 
“Paracetamol is the most frequently used over-the-counter pain medication,” says Dr. Grigori Rychkov, senior research fellow in the University’s School of Medical Sciences. “Overdose of paracetamol is the most common cause of acute liver failure and the leading cause of liver damage requiring transplantation in developed countries. The precise mechanisms of liver toxicity due to paracetamol overdose, however, have remained unclear.”
 
It has been known for a long time that paracetamol overdose is associated with toxic levels of calcium in liver cells but nobody has known how the calcium gets into the cells.
 
The University of Adelaide researchers have identified a channel transporting calcium across the cell membrane that is triggered by paracetamol overdose, known as Transient Receptor Potential Melanostatine2 (TRPM2). Once the channel is activated, the cells become overloaded with calcium, leading to cell death. If this continues and enough cells die, it can lead to liver failure.
 
In laboratory studies, conducted by Ehsan Kheradpezhouh, the research showed that when the TRPM2 channel was missing or blocked, liver cells were protected from paracetamol damage.
 
“We now have a potential drug target for treating paracetamol overdose and possibly some other liver-damaging poisonings,” Rychkov said.
 
Currently paracetamol overdose can be effectively treated- but only if caught within 18 hours.
 
“If we can block the TRPM2 channel we might be able to prevent the toxicity or extend this timeframe. If we can stop the calcium uptake and cell death, we’ll be giving the liver a better chance for recovery and, hopefully, preventing complete liver failure,” said Rychkov.
 
The study was conducted in collaboration with Flinders University.
 
Date: February 4, 2014
Source: University of Adelaide
 

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE