Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Process identified for improving durability of glass

By R&D Editors | March 11, 2015

Rendering of the molecular structure of sodium disilicate glass. Researchers have identified a way to produce glass that is more durable. Image: UCLA EngineeringResearchers at the Univ. of California, Los Angeles (UCLA) Henry Samueli School of Engineering and Applied Science and the Univ. Pierre et Marie Curie in Paris have identified a method for manufacturing longer-lasting and stronger forms of glass. The research could lead to more durable display screens, fiber-optic cables, windows and other materials, including cement. 

Glasses are liquids that are cooled in the manufacturing process to reach a stable “frozen liquid” state. However, as glass ages and is exposed to temperature variations, it continues to flow or “relax,” causing it to change shape.

This means that over time, windows and digital screens can deform, eventually becoming unusable. In the case of cement, which has a molecular structure similar to that of glass, relaxation eventually leads to cracking and, in bridges and tall buildings, a loss of structural integrity.

Mathieu Bauchy, an assistant professor of civil and environmental engineering at UCLA, and Matthieu Micoulaut, a professor of materials science at the Univ. Pierre et Marie Curie, have identified optimal conditions for developing more durable glass and cement.  

By performing computer simulations to test the molecular dynamics of materials commonly used to make glass, the researchers identified a range of pressures that are best for achieving “thermal reversibility,” in which a material will retain the same properties it had when it was produced, even if it has been exposed over time to variations in temperature.

The research was published in Nature Communications.

“The key finding is that if you use specific conditions to form glass—the right pressure and the right composition of the material—you can design reversible glasses that show little or no aging over time,” Bauchy said.

Bauchy said the molecular structure of glass is analogous to the metal framework of the Eiffel Tower. Strength and rigidity are partially a result of the angles at which beams and crossbeams connect. The researchers’ new process improves the angles at which molecular bonds occur, making the material stronger.

The research could also have a significant impact in slowing the production of greenhouse gases. The manufacture of cement and concrete results in approximately 5% of all greenhouse gas production, according to the American Ceramic Society.

“The smaller the quantity of material we use to rebuild deteriorating structures, the better it is for the environment,” said Bauchy, whose research focuses on forging stronger ties between fundamental physics and engineering to design better, more sustainable materials.

Source: Univ. of California, Los Angeles

Related Articles Read More >

KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
A new wave of metalworking lets semiconductor crystals bend and stretch
LLNL deposits quantum dots on corrugated IR chips in a single step
KATRIN inauguration photo form 2018
Neutrinos pinned below 0.45 eV; KATRIN halves the particle’s mass ceiling
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE