Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Progress in the fight against quantum dissipation

By R&D Editors | April 17, 2014

Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude.Scientists at Yale Univ. have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. They report their results in Nature.

High-quality quantum switches are essential for the development of quantum computers and the quantum Internet—innovations that would offer vastly greater information processing power and speed than classical (digital) computers, as well as more secure information transmission.

“Fighting dissipation is one of the main goals in the development of quantum hardware,” said Ioan Pop, a postdoctoral researcher in applied physics at Yale and lead author of the paper. “A quantum switch needs to act reversibly without losing any energy. Our result is very encouraging for the development of superconducting quantum bits acting as switches.”

Superconducting quantum bits, or qubits, are artificial atoms that represent information in quantum systems. They also manipulate that information as they switch among states—such as “0,” “1,” or both simultaneously—under the influence of other qubits. But in switching states, they tend to lose energy, resulting in information loss.

In the Yale experiment, researchers demonstrated that a type of superconducting quantum bit can be immune to dissipation in presence of a quasiparticle—a microscopic entity that normally saps the energy of the qubit.

“We can engineer a system that is immune to quasiparticle dissipation,” Pop said.

The researchers used an artificial fluxonium atom as their qubit.

The experiment confirms by direct measurement a theoretical prediction made by Nobel Prize-winning British physicist Brian Josephson in the 1960s, namely that quasiparticle dissipation should vanish under certain conditions. Josephson junctions are superconducting devices with properties well suited for building quantum processing systems.

The results open new frontiers in areas related to quantum information and quantum measurements, the researchers said, providing both a strategy for building dissipation-immune quantum systems and a specific new device that could be adapted for better measuring properties of quasiparticles and understanding their origin and dynamics.

Source: Yale Univ.

Related Articles Read More >

How IBM’s quantum architecture could design materials physics can’t yet explain
2025 R&D layoffs tracker hits 132,075 as Amazon CEO signals AI will cut more jobs
Probiotics power a bioresorbable battery that can run from 4 to 100+ minutes
Korean engineers show off ultra-light prosthetic hand with single-motor thumb
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE