Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Prototype provides pedestrian power

By R&D Editors | May 8, 2013

Julian Castro models the PediPower, an energy-producing prototype to run small electronics. It was invented by senior engineering students at Rice University. Photo: Jeff FitlowA group of Rice University mechanical engineering students are getting a charge out of having the coolest new shoes on campus.

As their capstone project that is required for graduation, four seniors created a way to extract and store energy with every step. Their PediPower shoes turn motion into juice for portable electronics and, perhaps someday, for life-preserving medical devices.

Cameron, a Houston-based international company, approached the Rice engineering students with the project. The company primarily works on the macroscale as a provider of flow equipment, systems, and services for the oil, gas, and process industries, but it asked the students to look toward microscale green energy technologies.

The Agitation Squad—Carlos Armada, Julian Castro, David Morilla, and Tyler Wiest—decided last fall to focus their attention on where the rubber meets the road to create a shoe-mounted generator. Another device to draw energy from the motion of the knee had already been developed and patented and led them to analyze other sources of energy.

Working with the Motion Analysis Laboratory at Shriners Hospital for Children in Houston, the team determined the force at the heel delivered far more potential for power than any other part of the foot.

“We went to the lab and saw the force distribution across the bottom of your foot, to see where the most force is felt,” Morilla says. “We found it would be at the heel and at the balls of your toes, as you push off. We went with the heel because, unless you’re sprinting, you’re letting gravity do the work.”

Their devices as currently designed are admittedly too big for day-to-day wear, but the prototypes developed at Rice’s Oshman Engineering Design Kitchen with the team’s advisers, David McStravick and Omar Kabir, meet the benchmarks set by the company. McStravick is a professor in the practice of mechanical engineering and materials science; Kabir is a senior principle research engineer in corporate technology at Cameron.

The prototypes deliver an average of 400 milliwatts, enough to charge a battery, in benchtop tests (and a little less in walking tests, where the moving parts don’t move as far). They send energy through wires to a belt-mounted battery pack. A voltage regulator keeps it flowing steadily to the battery.

The PediPower hits the ground before any other part of the prototype shoe. A lever arm strikes first. It is attached to a gearbox that replaces much of the shoe’s sole and turns the gears a little with each step. The gears drive a motor mounted on the outside of the shoe that generates electricity to send up to the battery.

“It may be worth looking into having both the heel and the ball of the foot produce power, especially if this shoe could be used while running,” Armada says.

The students expect the project to be picked up by another team at Rice in the fall, with the hope they can refine the materials, shrink the size and boost the power output, all of which will get PediPower closer to being a commercial product.

“If we could prove that we could produce some usable power, store it in a battery and discharge that battery on a mobile device or an MP3 player, then we could prove this device works,” Armada says. “Now the next team can come in and make it smaller and lighter without sacrificing power.”

For now, the team would like to provide enough dependable power for cellphones and other portable electronics. But they’re aware that Cameron has partnered with the Texas Heart Institute to apply its expertise in moving fluids to a new generation of artificial heart pumps, and the students hope their work will contribute to that goal.

“Just the fact that you’re relying on human movement to power something that’s critical to your life is a little bit scary,” Armada says. “You sleep for eight hours a day and you’re not moving. You want to make sure you’re making enough power during the day to last. Realistically, this might be more of a device to charge your phone.

“Theoretically it would be something you just wear, and you don’t notice it,” he says. “That’s the end goal. If you showed someone the shoe while you’re standing still, they wouldn’t even see the device.”

Source: Rice University

Related Articles Read More >

Stellantis and Factorial validate 375 Wh/kg solid-state EV cells
7 major R&D developments this week: Tariff uncertainty persists, Pfizer sells campus, Scania acquires Northvolt unit
Instant coffee tech brews up high-capacity, eco-friendly battery electrodes
9 major R&D moves this week: J&J’s $55B U.S. bet, NVIDIA CEO calls for 100x AI compute
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE