Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Pseudoparticles travel through photoactive material

By R&D Editors | April 23, 2015

Using the photoactive zinc oxide material, scientists studied the formation and migration of so-called polarons. Courtesy of Patrick Rinke/Aalto UniversityResearchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and the Aalto University in Helsinki/Finland, they studied the formation of so-called polarons in zinc oxide. The pseudoparticles travel through the photoactive material until they are converted into electrical or chemical energy at an interface. Their findings that are of relevance to photovoltaics among others are now published in the journal Nature Communications.

Processes converting light into storable energy may contribute decisively to a sustainable energy supply. For billions of years, nature has been using such processes for photosynthesis to form carbohydrates with the help of light. In research, phototcatalysis that uses light to accelerate chemical processes is gaining importance. In the past years, researchers also achieved considerable progress in photovoltaics converting incident sunlight directly into electrical energy. Efficiency constantly improved.

However, the processes underlying photovoltaics have hardly been studied in detail so far. “Conversion of photons, i.e. light particles, into electricity takes several steps,” Professor Christof Wöll, Head of the Institute of Functional Interfaces (IFG) of KIT, explains. First, light is absorbed in a photoactive material. Single electrons are removed from their site and leave a hole there. The electron-hole pairs are stable for a short term only. Then, they either decay under the emission of light or are separated into an electron and a hole that move in the material independently of each other. The fate of this charged particle then depends on the material.

In most materials, free holes are not stable, but converted into so-called polarons under energy loss. A polaron is a special pseudoparticle composed of a particle and its interaction with the environment. The polarons formed are stable for a longer term and travel through the photoactive material until they are converted into electrical or chemical energy at an interface.

Researchers of KIT under the direction of Professor Christof Wöll have now carried out experiments using photoactive zinc oxide material in order to study the formation and migration of polarons. They employed a worldwide unique experimental setup for infrared reflection absorption spectroscopy (IRRAS) with a temporal resolution of 100 milliseconds and measured infrared spectra of zinc oxide monocrystals and observed intensive absorption bands, i.e. fingerprints, of a so far unknown pseudoparticle. Interpretation of the data and identification of this new particle were big challenges for the KIT scientists. In cooperation with a group working at the Fritz Haber Institute and the Excellence Center for Computational Nanoscience (COMP) of Aalto University, however, they succeeded in unambiguously allocating the absorption bands to so-called hole polarons. “This is an important finding made in 2015, the International Year of Light and Light-based Technologies,” Professor Wöll says.

SOURCE: Karlsruhe Institute of Technology

Related Articles Read More >

First CRISPR-edited spider spins red fluorescent silk
KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
A new wave of metalworking lets semiconductor crystals bend and stretch
LLNL deposits quantum dots on corrugated IR chips in a single step
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE