Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Quantum Computing with Single Photons Closer to Reality

By R&D Editors | March 30, 2016

(Left) Illustration and (right) color-coded microscope image of a nanowire (green) integrated in a photonic waveguide (gray on left, purple on right). In the illustration, the photons emitted from the nanowire are depicted as red spheres. Insets show a light-emitting nanowire, which in the microscope image is attached to the tip of a nanomanipulator. (Credit: Zadeh, et al./ American Chemical Society) One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation.

The researchers, Iman Esmaeil Zadeh, Ali W. Elshaari, and coauthors, have published a paper on the integrated quantum circuits in a recent issue of Nano Letters.

As the researchers explain, one of the biggest challenges facing the realization of an efficient Linear Optical Quantum Computing system is integrating several components that are usually incompatible with each other onto a single platform. These components include a single-photon source such as quantum dots; routing devices such as waveguides; devices for manipulating photons such as cavities, filters, and quantum gates; and single-photon detectors.

In the new study, the researchers have experimentally demonstrated a method for embedding single-photon-generating quantum dots inside nanowires that, in turn, are encapsulated in a waveguide. To do this with the high precision required, they used a “nanomanipulator” consisting of a tungsten tip to transfer and align the components. Once inside the waveguide, single photons could be selected and routed to different parts of the optical circuit, where logical operations can eventually be performed.

“We proposed and demonstrated a hybrid solution for integrated quantum optics that exploits the advantages of high-quality single-photon sources with well-developed silicon-based photonics,” Zadeh, at Delft University of Technology in The Netherlands, told Phys.org. “Additionally, this method, unlike previous works, is fully deterministic, i.e., only quantum sources with the selected properties are integrated in photonic circuits.

“The proposed approach can serve as an infrastructure for implementing scalable integrated quantum optical circuits, which has potential for many quantum technologies. Furthermore, this platform provides new tools to physicists for studying strong light-matter interaction at nanoscales and cavity QED [quantum electrodynamics].”

One of the most important performance metrics for Linear Optical Quantum Computing is the coupling efficiency between the single-photon source and photonic channel. A low efficiency indicates photon loss, which reduces the computer’s reliability. The set-up here achieves a coupling efficiency of about 24% (which is already considered good), and the researchers estimate that optimizing the waveguide design and material could improve this to 92%.

In addition to improving the coupling efficiency, in the future the researchers also plan to demonstrate on-chip entanglement, as well as increase the complexity of the photonic circuits and single-photon detectors.

“Ultimately, the goal is to realize a fully integrated quantum network on-chip,” said Elshaari, at Delft University of Technology and the Royal Institute of Technology (KTH) in Stockholm. “At this moment there are a lot of opportunities, and the field is not well explored, but on-chip tuning of sources and generation of indistinguishable photons are among the challenges to be overcome.”

 

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
Five cases where shaky science snowballed into public confusion
Caltech, Fermilab, and collaborators test quantum sensors for future particle physics experiments
2025 R&D layoffs tracker: 83,543 and counting
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE