Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Recipe for low-cost, biomass-derived catalyst for hydrogen production

By R&D Editors | April 24, 2013

Wei-Fu Chen, Shweta Iyer, James Muckerman, Sasaki Kotaro, Etsuko Fujita, and Shilpa Iyer. Photo: Brookhaven National LaboratoryIn a paper to be published in an upcoming issue of Energy & Environmental Science (now available online), researchers at the U.S. Department of Energy (DOE)’s Brookhaven National Laboratory describe details of a low-cost, stable, effective catalyst that could replace costly platinum in the production of hydrogen. The catalyst, made from renewable soybeans and abundant molybdenum metal, produces hydrogen in an environmentally friendly, cost-effective manner, potentially increasing the use of this clean energy source.

The research has already garnered widespread recognition for Shilpa and Shweta Iyer, twin-sister high school students who contributed to the research as part of an internship under the guidance of Brookhaven chemist Wei-Fu Chen, supported by projects led by James Muckerman, Etsuko Fujita, and Kotaro Sasaki.

“This paper reports the ‘hard science’ from what started as the Iyer twins’ research project and has resulted in the best-performing, non-noble-metal-containing hydrogen evolution catalyst yet known—even better than bulk platinum metal,” Muckerman says.

The project branches off from the Brookhaven group’s research into using sunlight to develop alternative fuels. Their ultimate goal is to find ways to use solar energy—either directly or via electricity generated by solar cells—to convert the end products of hydrocarbon combustion, water and carbon dioxide, back into a carbon-based fuel. Dubbed “artificial photosynthesis,” this process mimics how plants convert those same ingredients to energy in the form of sugars. One key step is splitting water, or water electrolysis.

“By splitting liquid water (H2O) into hydrogen and oxygen, the hydrogen can be regenerated as a gas (H2) and used directly as fuel,” Sasaki explains. “We sought to fabricate a commercially viable catalyst from earth-abundant materials for application in water electrolysis, and the outcome is indeed superb.”

This form of hydrogen production could help the scientists achieve their ultimate goal.

“A very promising route to making a carbon-containing fuel is to hydrogenate carbon dioxide (or carbon monoxide) using solar-produced hydrogen,” says Fujita, who leads the artificial photosynthesis group in the Brookhaven Chemistry Department.

But with platinum as the main ingredient in the most effective water-splitting catalysts, the process is currently too costly to be economically viable.

Comsewogue High School students Shweta and Shilpa Iyer entered the laboratory as the search for a cost-effective replacement was on.

The Brookhaven team had already identified some promising leads with experiments demonstrating the potential effectiveness of low-cost molybdenum paired with carbon, as well as the use of nitrogen to confer some resistance to the corrosive, acidic environment required in proton exchange membrane water electrolysis cells. But these two approaches had not yet been tried together.

The students set out to identify plentiful and inexpensive sources of carbon and nitrogen, and test ways to combine them with a molybdenum salt.

“The students became excited about using familiar materials from their everyday lives to meet a real-world energy challenge,” Chen recounts. The team tested a wide variety of sources of biomass—leaves, stems, flowers, seeds, and legumes—with particular interest in those with high protein content because the amino acids that make up proteins are a rich source of nitrogen. High-protein soybeans turned out to be the best.

undefined

click to enlarge
 
Splitting hydrogen from water: This illustration depicts the synthesis of a new hydrogen-production catalyst from soybean proteins and ammonium molybdate. Mixing and heating the ingredients leads to a solid-state reaction and the formation of nanostructured molybdenum carbide and molybdenum nitride crystals. The hybrid material effectively catalyzes the conversion of liquid water to hydrogen gas while remaining stable in an acidic environment. Image: Brookhaven National Laboratory   

To make the catalyst the team ground the soybeans into a powder, mixed the powder with ammonium molybdate in water, then dried and heated the samples in the presence of inert argon gas. “A subsequent high-temperature treatment (carburization) induced a reaction between molybdenum and the carbon and nitrogen components of the soybeans to produce molybdenum carbides and molybdenum nitrides,” Chen explains. “The process is simple, economical, and environmentally friendly.”

Electrochemical tests of the separate ingredients showed that molybdenum carbide is effective for converting water to hydrogen, but not stable in acidic solution, while molybdenum nitride is corrosion-resistant but not efficient for hydrogen production. A nanostructured hybrid of these two materials, however, remained active and stable even after 500 hours of testing in a highly acidic environment.

“We attribute the high activity of the molybdenum-soy catalyst (MoSoy) to the synergistic effect between the molybdenum-carbide phase and the molybdenum-nitride phase in the composite material,” Chen says.

Structural and chemical studies of the new catalyst conducted at Brookhaven’s National Synchrotron Light Source (NSLS) and the Center for Functional Nanomaterials (CFN) are also reported in the paper, and provide further details underlying the high performance of this new catalyst.

“The presence of nitrogen and carbon atoms in the vicinity of the catalytic molybdenum center facilitates the production of hydrogen from water,” Muckerman says.

The scientists also tested the MoSoy catalyst anchored on sheets of graphene—an approach that has proven effective for enhancing catalyst performance in electrochemical devices such as batteries, supercapacitors, fuel cells, and water electrolyzers. Using a high-resolution transmission microscope in Brookhven’s Condensed Matter Physics and Materials Science Department, the scientists were able to observe the anchored MoSoy nanocrystals on 2D graphene sheets.

The graphene-anchored MoSoy catalyst surpassed the performance of pure platinum metal. Though not quite as active as commercially available platinum catalysts, the high performance of graphene-anchored MoSoy was extremely encouraging to the scientific team.

“The direct growth of anchored MoSoy nanocrystals on graphene sheets may enhance the formation of strongly coupled hybrid materials with intimate, seamless electron transfer pathways, thus accelerating the electron transfer rate for the chemical desorption of hydrogen from the catalyst, further reducing the energy required for the reaction to take place,” Sasaki says.

The scientists are conducting additional studies to gain a deeper understanding of the nature of the interaction at the catalyst-graphene interface, and exploring ways to further improve its performance.

In the paper, the authors—including the two high-school students—conclude: “This study unambiguously provides evidence that a cheap and earth-abundant transition metal such as molybdenum can be turned into an active catalyst by the controlled solid-state reaction with soybeans…The preparation of the MoSoy catalyst is simple and can be easily scaled up. Its long-term durability and ultralow capital cost satisfy the prerequisites for its application in the construction of large-scale devices. These findings thus open up new prospects for combining inexpensive biomass and transition metals…to produce catalysts for electro-catalytic reactions.”

Source: Brookhaven National Laboratory

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE