Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Record Data Transmission Demonstrated over Specially Fabricated Fiber

By R&D Editors | October 27, 2014

Researchers have demonstrated the potential of a new class of fiber to increase transmission capacity and mitigate the impending capacity crunch.Researchers report the successful transmission of a record high 255 Terabits/s over a new type of fiber allowing 21 times more bandwidth than currently available in communication networks. This new type of fiber could be an answer to mitigating the impending optical transmission capacity crunch caused by the increasing bandwidth demand.

Our data hungry society

Due to the popularity of Internet services and emerging network of capacity-hungry datacenters, demand for telecommunication bandwidth is expected to continue at an exponential rate. To transmit more information through current optical glass fibers, an option is to increase the power of the signals to overcome the losses inherent in the glass from which the fiber is manufactured. However, this produces unwanted photonic nonlinear effects, which limit the amount of information that can be recovered after transmission over the standard fiber.

New class of fibers

The team at Eindhoven University of Technology (TU/e) in the Netherlands and the University of Central Florida (CREOL) in the USA, led by dr. Chigo Okonkwo, an assistant professor in the Electro-Optical Communications (ECO) research group at TU/e and dr. Rodrigo Amezcua Correa, a research assistant professor in Micro-structured fibers at CREOL, demonstrate the potential of a new class of fiber to increase transmission capacity and mitigate the impending ‘capacity crunch’ in their article that appeared October 26, 2104, in the online edition of the journal Nature Photonics.

More than 20 times the current standard

The new fiber has seven different cores through which the light can travel, instead of one, in current state-of-the-art fibers. This compares to going from a one-way road to a seven-lane highway. Also, they introduce two additional orthogonal dimensions for data transportation — as if three cars can drive on top of each other in the same lane. Combining those two methods, they achieve a gross transmission throughput of 255 Terabits/s over the fiber link. This is more than 20 times the current standard of 4 to 8 Terabits/s.

European Union MODEGAP Project

Dr. Chigo Okonkwo: “At less than 200 microns in diameter, this fiber does not take noticeably more space than conventional fibers already deployed. These remarkable results, supported by the European Union Framework 7, MODEGAP, definitely give the possibility to achieve petabits/s transmission, which is the focus of the European Commission in the coming seven-year Horizon 2020 research program. The result also shows the key importance of the research carried out in Europe and, in particular, at TU/e with other well-known teams around the world in high-capacity optical transmission systems.”

Citation: R.G.H. van Uden et al, “Ultra-high-density spatial division multiplexing with a few-mode multicore fiber,”Nature Photonics (online, 26 October 2014) doi:10.1038/nphoton.2014.243

Related Articles Read More >

Maryland set for first subsea internet cable: AWS’s 320+ Tbps “Fastnet” to Ireland
Microsoft’s 4D geometric codes slash quantum errors by 1,000x
Berkeley Lab’s Dell and NVIDIA-powered ‘Doudna’ supercomputer to enable real-time data access for 11,000 researchers
QED-C outlines road map for merging quantum and AI
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE