Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Regenerating Muscle in Duchenne Muscular Dystrophy

By R&D Editors | April 15, 2014

HDAC inhibitors (HDACi) promote muscle regeneration in a mouse model of Duchenne Muscular Dystrophy at early stages of disease by targeting fibro-adipogenic progenitors (FAPs). Staining of FAPs from muscles of HDACi-treated young mdx mice reveals presence of differentiated muscle cells (green) at the expense of fat cells (red). Nuclei are stained in blue. (Source: Sanford Burnham Medical Research Institute/Lorenzo Puri, M.D.)A team of scientists led by Pier Lorenzo Puri, associate professor at Sanford-Burnham Medical Research Institute (Sanford-Burnham), in collaboration with Fondazione Santa Lucia in Rome, Italy, have published details of how a class of drugs called “HDACis” drive muscle-cell regeneration in the early stages of dystrophic muscles, but fail to work in late stages. The findings are key to furthering clinical development of HDACis for Duchenne muscular dystrophy (DMD), an incurable muscle-wasting disease.
 
A symphony to rebuild muscle
 
The research, published in Genes and Development, used mouse models of DMD to show how fibro-adipogenic progenitor cells (FAPs) act like orchestra conductors in the music of muscle regeneration. FAPs sit in the space between muscle fibers and coordinate a complex symphony—receiving the notes that muscle has been damaged and directing muscle stem cells—satellite cells—to rebuild muscle.
 
“HDACis create an environment conducive for FAPs to direct muscle regeneration—but only during the early stages of DMD progression in mice,” said Puri. “At some point, DMD progresses to a pathological point of no return and become permanently resistant to muscle-regeneration cures and to HDACis. 
HDACis open the blueprints for muscle regeneration
 
HDACis stands for histone deacetylase inhibitors. They are epigenetic drugs that work by facilitating the accessibility to the genes that code for muscle proteins by the cell machinery that transcribes the genetic code into proteins. In essence, HDACis open the blueprints for protein manufacturing and instruct FAPs to support muscle regeneration.
 
In normal wear and tear, FAPs direct stem cells within the muscle to regenerate and repair damaged muscle. In DMD, the persistent breakdown of muscle cells creates an environment in such disarray that FAP’s ability to direct muscle regeneration is compromised—like trying to conduct a symphony with punk rock music in the background.
 
Collaborating to find a treatment for DMD
 
Puri, along with his Italian colleagues at Fondazione Santa Lucia, Italfarmaco, and Parent Project Muscular Dystrophy, an advocacy association, are currently developing HDACis for the treatment of DMD– a clinical trial with DMD boys is currently ongoing.
 
“Our study is important because it provides the rational for the clinical development of HDACis to treat DMD,” said Puri. “And, now that we understand the mechanics and sensitivities of the muscle-regeneration system, we have the rationale and can use new tools to select patients most likely to benefit from HDACIs based on their FAP profile, predict outcomes, and see how long patients should remain on the therapy.”
 
“Duchenne muscular dystrophy patients and their families rely on important research such as that performed by Dr. Puri,” said Debra Miller, Founder of Cure Duchenne, a patient advocacy group. “Our efforts at Cure Duchenne are to support leading scientists in the world to bring life-saving drugs to help this generation of Duchenne boys, and our vision is to cure Duchenne muscular dystrophy. Every added piece of knowledge about the disease brings us closer to realizing our goals.”
 
Date: April 14, 2014
Source: Sanford Burnham Medical Research Institute

Related Articles Read More >

For the first time, scientists grow beating human-pig hearts for 21 days
Open-source Boltz-2 can speed binding-affinity predictions 1,000-fold
Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE