Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Researchers 3D Print “Living” Blood Vessels

By R&D Editors | December 4, 2015

Researchers at Lawrence Livermore National Laboratory say the precision and 3D structures made possible through bioprinting are enabling them to more effectively reproduce human physiology outside of the body, which will eventually lead to a better representation of each tissue system that makes up the human body.The cardiovascular system is a complex web of tens of thousands of miles of arteries, capillaries and veins, branching throughout the body like tributaries of a great river. And now, researchers at Lawrence Livermore National Laboratory are recapitulating this intricate network using an emerging technology: 3D bioprinting.

“It’s going to change the way we do biology,” says Lab research engineer Monica Moya, the project’s principal investigator. “This technology can take biology from the traditional petri dish to a 3D physiologically relevant tissue patch with functional vasculature.”

Using a 3D printer and a “bio-ink” made of materials compatible with the human body, Moya and her team have successfully printed structures with living cells and biomaterials. The material and environment are engineered to enable small blood vessels, human capillaries, to develop on their own.

This process takes a while, so initially, tubes are printed out of cells and other biomaterials to deliver essential nutrients to the surrounding printed environment. Eventually, the self-assembled capillaries are able to connect with the bio-printed tubes and deliver nutrients to the cells on their own, enabling these structures to function like they do in the body.

“If you take this approach of co-engineering with nature you allow biology to help create the finer resolution of the printed tissue,” Moya says. “We’re leveraging the body’s ability for self-directed growth, and you end up with something that is more true to physiology. We can put the cells in an environment where they know, ‘I need to build blood vessels.’ With this technology we guide and orchestrate the biology.”

Researchers say the precision and 3D structures made possible through bioprinting are enabling them to more effectively reproduce human physiology outside of the body, and will eventually lead to a better representation of each tissue system that makes up the human body.

Bioprinting complements a different Lab project aimed at replicating the body on a micro scale. That project, known as iCHIP (in vitro Chip-based Human Investigational Platform), re-creates and integrates the central and peripheral nervous systems, the blood-brain barrier and the heart.

“Bioprinting adds another dimension to tissue–on-a-chip platforms,” says Lab research engineer Elizabeth Wheeler, the principal investigator for iCHIP. “Having the ability to control the 3D structural environment, along with growing vessel networks to support the growing tissue, is one part of replicating the complexity of the human body.”

Currently in the final year of a three-year project funded by Laboratory Directed Research and Development, an internal program, Moya has used bioprinting to create an unorganized (think: “a spaghetti bowl”) network of blood vessels, but she wants to go a step further, engineering a directed hierarchy similar to those that exist in the body.

Soon, Moya and other researchers will be able to utilize a brand new 3D bioprinting lab containing a more precise printer capable of higher resolution and larger structures.

The technique, despite being in its infancy, is already opening doors to valuable research opportunities previously unavailable to science.

“Although printing implantable organs is not in the immediate future, our bioprinted tissue patches can be applied to toxicology studies, medical treatment testing, and provide a test bed for fundamental science,” Moya says.

Release Date: December 3, 2015
Source: Lawrence Livermore National Laboratory 

Related Articles Read More >

For the first time, scientists grow beating human-pig hearts for 21 days
Open-source Boltz-2 can speed binding-affinity predictions 1,000-fold
Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE