Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Researchers design nanometer-scale material that can speed up, squeeze light

By R&D Editors | April 29, 2013

In a process comparable to squeezing an elephant through a pinhole, researchers at Missouri University of Science and Technology have designed a way to engineer atoms capable of funneling light through ultrasmall channels.

Their research is the latest in a series of recent findings related to how light and matter interact at the atomic scale, and it is the first to demonstrate that the material—a specially designed “meta-atom” of gold and silicon oxide—can transmit light through a wide bandwidth and at a speed approaching infinity. The meta-atoms’ broadband capability could lead to advances in optical devices, which currently rely on a single frequency to transmit light, the researchers say.

“These meta-atoms can be integrated as building blocks for unconventional optical components with exotic electromagnetic properties over a wide frequency range,” write Jie Gao and Xiaodong Yang, assistant professors of mechanical engineering at Missouri S&T, and Lei Sun, a visiting scholar at the university. The researchers describe their atomic-scale design in Physical Review B.

The researchers created mathematical models of the meta-atom, a material 100-nanometers wide and 25-nanometers tall that combined gold and silicon oxide in stairstep fashion.

In their simulations, the researchers stacked 10 of the meta-atoms, then shot light through them at various frequencies. They found that when light encountered the material in a range between 540 terahertz and 590 terahertz, it “stretched” into a nearly straight line and achieved an “effective permittivity” known as epsilon-near-zero. Effective permittivity refers to the ratio of light’s speed through air to its speed as it passes through a material. When light travels through glass, for instance, its effective permittivity is 2.25. Through air or the vacuum of outer space, the ratio is one. That ratio is what is typically referred to as the speed of light.

As light passes through the engineered meta-atoms described by Gao and Yang, however, its effective permittivity reaches a near-zero ratio. In other words, through the medium of these specially designed materials, light actually travels faster than the speed of light. It travels “infinitely fast” through this medium, Yang says.

The meta-atoms also stretch the light. Other materials, such as glass, typically compress optical waves, causing diffraction.

This stretching phenomenon means that “waves of light could tunnel through very small holes,” Yang says. “It is like squeezing an elephant through an ultra-small channel.”

The wavelength of light encountering a single meta-atom is 500 nanometers from peak to peak, or five times the length of Gao and Yang’s specially designed meta-atoms, which are 100 nanometers in length. While the Missouri S&T team has yet to fabricate actual meta-atoms, they say their research shows that the materials could be built and used for optical communications, image processing, energy redirecting, and other emerging fields, such as adaptive optics.

Last year, Albert Polman at the FOM Institute for Atomic and Molecular Physics in Amsterdam and Nader Engheta, an electrical engineer at the University of Pennsylvania, developed a tiny waveguide device in which light waves of a single wavelength also achieved epsilon-near-zero. But the Missouri S&T researchers’ work is the first to demonstrate epsilon-near-zero in a broadband of 50 terahertz.

“The design is practical and realistic, with the potential to fabricate actual meta-atoms,” says Gao. Adds Yang: “With this research, we filled the gap from the theoretical to the practical.”

Through a process known as electron-beam deposition, the researchers have built a thin-film wafer from 13 stacked meta-atoms. But those materials were uniform in composition rather than arranged in the stairstep fashion of their modeled meta-atoms.

Source: Missouri University of Science and Technology

Related Articles Read More >

KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
A new wave of metalworking lets semiconductor crystals bend and stretch
LLNL deposits quantum dots on corrugated IR chips in a single step
KATRIN inauguration photo form 2018
Neutrinos pinned below 0.45 eV; KATRIN halves the particle’s mass ceiling
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE