Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Researchers find protein that may signal more aggressive prostate cancers

By R&D Editors | April 14, 2015

Tissue sample obtained in prostate cancer study. The cells stained brown show early prostate cancer, the blue stained cells indicate healthy cells. Image: Renny Franceschi, professor of Dentistry at the Univ.  of MichiganUniv. of Michigan researchers have discovered a biomarker that may be a potentially important breakthrough in diagnosing and treating prostate cancer.

Biomarkers in the body are analogous to the warning lights in cars that signal something might need repairing. In our bodies, they indicate if something’s wrong or if we’re about to get sick or if we’re predisposed to certain illnesses.

“(In the context of prostate cancer) there’s a big interest in trying to find biomarkers to discriminate between aggressive and nonaggressive disease,” said Renny Franceschi, U-M professor of dentistry, biological chemistry and biomedical engineering.

Franceschi and colleagues recently discovered a biomarker that they believe achieves this differentiation. Prostate cancer can grow so slowly the carrier dies of natural causes before the cancer spreads, but the deadly form progresses very rapidly.

“If this biomarker does indeed control the growth of prostate cells, it’s a new signal that’s not been seen before and could provide a potential new drug target for prostate cancer,” Franceschi said. “It could also be a potential biomarker to discriminate between fast and slow growing tumors.”

The U-M researchers made the discovery in a roundabout way, said Franceschi, whose research lab mainly studies bone formation, not cancer.

“We discovered this regulatory mechanism in bone cells, but subsequently found it was also operative in prostate cancer cells,” he said. “This is the first paper the lab has published on cancer.”

The idea is that adding a phosphate group, a process called phosphorylation, to the protein Runx2, changes its structure to activate specific genes in both bone and prostate cancer cells—but with vastly different results. Bone cells need Runx2 and the newly roused genes to make healthy bone. However, in prostate cancer cells, Runx2 triggered genes that fuel tumor growth and metastasis.

“It’s unusual that a protein whose function is to produce bone has this unusual function in prostate cancer,” Franceschi said.

To test this, researchers inhibited the ability of Runx2 to be phosphorylated in cancer cells and found that tumor growth was reduced. Franceschi’s lab also collaborated with researchers in Italy to analyze tissue samples from 129 patients with prostate cancer.

They found little or no Runx2 phosphorylation in normal prostate, benign prostate or prostatitis, which suggests that Runx2 phosphorylation is closely associated with the more aggressive forms of prostate cancer.

The next step is to establish an actual cause-effect relationship between Runx2 phosphorylation and prostate cancer. To do this they will compare prostate cancer formation in normal mice and mice lacking Runx2 in their prostates.

Source: Univ. of Michigan

ENTRIES OPEN:
Establish your company as a technology leader. For 50 years, the R&D 100 Awards, widely recognized as the “Oscars of Invention,” have showcased products of technological significance. Learn more.

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE