Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Researchers identify keys to improved polymer solar cells

By R&D Editors | February 23, 2015

A UCLA graduate student researcher with two of the polymers used in developing more efficient solar cell technology, as well as a polymer blend. Image: UCLA EngineeringPaving the way for lighter and more flexible solar devices, Univ. of California, Los Angeles (UCLA) researchers have identified the key principles for developing high-efficiency polymer solar cells.

Today’s commercially produced solar panels use silicon cells to efficiently convert sunlight to energy. But silicon panels are too heavy to be used for energy-producing coatings for buildings and cars, or flexible and portable power supplies for use in remote areas. Polymer cells are better suited to these potential uses.

Researchers led by Yang Yang, the Carol and Lawrence E. Tannas Jr. Professor of Engineering at the UCLA Henry Samueli School of Engineering and Applied Science, demonstrated improvement in the architecture and performance of polymer cells. The group successfully blended different pairs of polymers—or synthetic plastics—to enable devices to absorb light from a larger part of the solar spectrum. They also identified criteria that could lead to even greater solar cell efficiency and absorption of light as researchers develop new polymers.

The research was published in Nature Photonics.

Solar cells based on different materials or molecular structures show different potential in terms of efficiency, flexibility and cost-effectiveness, according to Yang, the principal investigator on the research and a member of the California NanoSystems Institute.

Silicon cells are the current choice for efficient energy conversion. Perovskite cells, developed over the last few years, show great promise in terms of efficiency, but are still being studied. Polymer cells, which have been studied for many years, have the advantage of being light and inexpensive to manufacture.

“As polymer solar cells become more efficient,” said Yang, “they could have a profound impact on our ability to tap the power of the sun.”

Over the years, researchers have invented polymers with different molecular structures in an effort to create materials that can absorb light from different parts of the solar spectrum. They also have blended two or more polymers together on one device to further improve absorption. However, blending has not yielded great improvement.

In the new study, UCLA researchers demonstrated the problem could be solved by carefully selecting polymers with molecular structures that are compatible with each other.  Using different combinations of polymers and device architectures, they determined which blends improved the solar cells’ efficiency and which were incompatible with each other.

Yang “Michael” Yang, no relation to the principal investigator, was the first author of the paper.

“By experimenting with the molecular organization and crystallite size of the polymers, and the architecture of the cell, we found a rule for selecting the proper pair of polymers to enhance efficiency,” he said. “These findings can help chemists design better pairs of polymers and reach even higher efficiency in the future.”

Source: Univ. of California, Los Angeles

Related Articles Read More >

Google invests in fusion energy as the company’s energy use keeps climbing
Plastic converted into clean energy
New 10,000 square-foot plasma research center in Princeton, NJ
2025 R&D layoffs tracker hits 132,075 as Amazon CEO signals AI will cut more jobs
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE