Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Researchers to map step-by-step mechanism of photosynthesis

By R&D Editors | December 4, 2013

Image: Rensselaer Polytechnic InstituteWith support from the Photosynthetic Systems Div. at the U.S. Dept. of Energy (DOE), researchers in the School of Science at Rensselaer Polytechnic Institute are expanding a successful research program to uncover the minute workings of the photosynthetic protein, Photosystem II. The high-impact research, led by prof. K.V. Lakshmi, seeks to adapt photosynthesis for artificial use as an abundant source of renewable energy.

“I think of Photosystem II as the ‘engine of life,’” said Lakshmi, assoc. prof. of chemistry and chemical biology, and scientific lead at the Baruch ’60 Center for Biochemical Solar Energy Research at Rensselaer. “Photosystem II powers the planet with solar energy. If there is a design that is perfect for harnessing the energy of the sun, this is it. And we want to use nature as a blueprint to design a new generation of bio-inspired solar cells that builds on the efficient design principles of nature.”

Photosystem II, found in plants and cyanobacteria, uses photons of light to break apart molecules of water, extracting electrons to fuel the photosynthetic conversion of light and water into chemical energy for cellular functions. This reaction—solar oxidation of water—takes place in a cluster of oxygen, manganese and calcium ions called the “oxygen-evolving complex.” The oxygen-evolving complex uses four photons of light to split two molecules of water in five distinct steps known as “S-states.” Each intermediate S-state, numbered from S-0 to S-4, is measured in trillionths of a second, and the final three S-states are highly unstable, making it difficult to determine the exact mechanism by which they occur. In research published in 2012, and supported by the DOE, Lakshmi and her team used advanced spectroscopic techniques to describe the exact atomic-level mechanism of S-2, the third step in the process.

The new $500,000, three-year DOE grant expands the scope of Lakshmi’s research to the structure of the oxygen-evolving complex through the remaining five S-states. In addition, the Baruch ’60 Center is designing an artificial oxygen-evolving complex with the goal of developing man-made photosynthetic devices that capture the efficiency of the light reactions of photosynthesis.

The DOE grant also supports a partnership with Shengbai Zhang, the Gail and Jeffrey L. Kodosky ‘70 Constellation in Physics, Information Technology and Entrepreneurship at Rensselaer, to develop computational models that augment the leading-edge experimental techniques that Lakshmi developed in her 2011 research at the Baruch ’60 Center. The quantum mechanical calculations that address this highly complex scientific problem are made possible by leveraging the petascale supercomputing system—the most powerful university-based supercomputer in the Northeast and the most powerful supercomputer at a private university in the U.S.—recently installed at the Rensselaer Center for Computational Innovations.

In describing the mechanism of the S-2 intermediate state, Lakshmi developed techniques that allowed her to isolate the protein from cyanobacteria and spinach, and then use liquid helium to cool the protein and slow its movements. At the precise moment at which the oxygen evolving complex is in the S-2 intermediate state, she takes real-time snapshots of the transformation using pulsed electron paramagnetic resonance spectroscopy. As part of the expanded scope of the project, Lakshmi will also use solids nuclear magnetic resonance spectroscopy to investigate the transfer of hydrogen nuclei during the solar water splitting reaction at the oxygen-evolving complex of photosystem II.

“This started out as a small project where we said, ‘experimentally, let’s try to understand what’s going on in the S-2 intermediate state,’” Lakshmi said. “Our research met with rapid success, and now we are going to significantly increase the scope by saying, ‘now let’s understand what’s happening in the other intermediate states and contribute toward solving the problem of solar water oxidation in nature.’”

This research will provide insight on the complex mechanisms of coupled charge transfer and multi-step electron transfer that are absolutely essential for the water splitting reaction in natural and artificial man-made photosynthesis.

Researchers know that the cluster of oxygen, manganese and calcium must be shuttling electrons and protons back and forth, gradually transforming two molecules of water into a molecule of di-oxygen, four hydrogen nuclei, and four electrons. And some details of the protein have already been deciphered, including an atomic-level x-ray crystal structure of Photosystem II in its resting state in the absence of light. But a working picture of the oxygen-evolving complex as it absorbs each of the four photons of light remains an obstacle to developing highly efficient, bio-inspired artificial photosynthetic devices for solar energy conversion. The role of novel solar devices in the energy sector could lead to tremendous energy savings, vastly more efficient energy storage and nanoscale engines that are robust, efficient, and inexpensive.

“Solar water splitting in Photosystem II is 95 percent efficient, and in order to replicate it, we need to understand the step-by-step mechanism of water oxidation reaction,” Lakshmi said. “To do that, we have to go full circle and expand the experimental and computational capabilities we have to understand the other S-state intermediates of the reaction.”

Big Data, broad data, high-performance computing, data analytics and Web science are creating a significant transformation globally in the way we make connections, make discoveries, make decisions, make products and, ultimately, make progress. Lakshmi’s research, under the auspices of the Rensselaer Institute for Data Exploration and Applications—or The Rensselaer IDEA, is part of the university-wide effort at Rensselaer to maximize the capabilities of these tools and technologies for the purpose of expediting scientific discovery and innovation, developing the next generation of these digital enablers, and preparing our students to succeed and lead in this new data-driven world. 

Source: Rensselaer Polytechnic Institute

Related Articles Read More >

New 10,000 square-foot plasma research center in Princeton, NJ
2025 R&D layoffs tracker hits 132,075 as Amazon CEO signals AI will cut more jobs
Sandia
Sandia Truman Fellows advance quantum optics from lab to wafer-scale and field applications
Sandia National Laboratories’ Kenneth Armijo, project lead, stands beside the Sandia Molten Salt Test Loop, the world’s largest lab-scale molten salt testing facility. (Photo by David Lienemann)
Sandia to restart molten-salt test loop with $2.5 million DOE funding
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE