Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Rewriting General Relativity? New model of quantum gravity

By R&D Editors | August 28, 2009

Rewriting General Relativity? New model of quantum gravity 

Scientists are trying to figure out to what extent a new theory of quantum gravity will reproduce general relativity
Scientists are trying to figure out to what extent a new theory of quantum gravity will reproduce general relativity — the theory that currently explains, to very high accuracy, how masses curve space-time and create the influence of gravity. Courtesy of American Physical Society/Carin Cain 

Does an exciting but controversial new model of quantum gravity reproduce Einstein’s theory of general relativity? Scientists at Texas A&M University explore this question in a paper appearing in Physical Review Letters and highlighted with a Viewpoint in the August 24th issue of Physics.

“If it ain’t broke, don’t fix it,” sums up fairly well how many scientists have viewed Einstein’s theory of general relativity. The theory, which Einstein developed in the early 20th century, says that matter curves space-time, and it is this curvature which deflects massive bodies — an effect that we interpret as the influence of gravity. The theory has been tested to extremely high accuracy and, without it, our satellite global positioning system would be off by about 10 km per day.

Despite the success of general relativity, one of the most important problems in modern physics is finding a theory of quantum gravity that reconciles the continuous nature of gravitational fields with the inherent graininess of quantum mechanics. Recently, Petr Ho?ava at Lawrence Berkeley Lab proposed such a model for quantum gravity that has received widespread interest, in no small part because it is one of the few models that could be experimentally tested. In Ho?ava’s model, Lorentz symmetry, which says that physics is the same regardless of the reference frame, is violated at small distance scales, but remerges over longer distance scales

The team at Texas A&M, which includes Hong Lu, Jianwei Mei and Christopher Pope, report their investigations into how the modifications proposed in Ho?ava’s theory will broadly affect the solutions of general relativity. One aspect of their study is that it leads to an important caveat, described by Horatiu Nastase in a Viewpoint commentary in Physics. The team’s calculations, explains Nastase, suggest that Ho?ava’s model only reproduces general relativity on unobservable scales, “larger than the size of the Universe.”

The paper is an important contribution to testing the Ho?ava model and shows that a good deal of work remains to understand its full implications.

Related Articles Read More >

Five simple ways to improve project management processes for your R&D team
ENPICOM launches display solution to accelerate antibody selection while maximizing precision
Groundbreaking research could help paramedics save the lives of pedestrian casualties 
R&D 100 winner of the day: Slycat
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars