Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Robotic Spiders Enter Volcano, Form Real-time Data Network

By R&D Editors | August 12, 2009

Robotic “Spiders” Enter Volcano, Form Real-time Data Network

Robotic Spider
A sensor like this is being placed inside and around the mouth of Mount St. Helens. One day it may be used to respond rapidly to an impending eruption.

Scientists have placed high-tech “spiders” inside and around the mouth of Mount St. Helens, one of the most active volcanoes in the United States. Networks such as these could one day be used to respond rapidly to an impending eruption. On July 14, 2009, these spider pods were lowered by cable from a helicopter hovering about 100 feet up (30 meters) and gently put in hot spots inside and around the volcano crater.

“This project demonstrates that a low-cost sensor network system can support real-time monitoring in extremely challenging environments,” said WenZhan Song of Washington State University Vancouver. Song is the principal investigator for this NASA-funded technology research project, which also draws on participation from the U.S. Geological Survey and from NASA’s Jet Propulsion Laboratory, Pasadena, CA.

These robotic emissaries were built to go where no human can and operate in extreme temperatures and treacherous terrain. Fifteen pods form a virtual wireless network, communicating with each other and the Earth Observing-1 (EO-1) satellite, operated by NASA’s Goddard Space Flight Center, in Greenbelt, MD.

“Taking data from the ground onsite and from above by satellite gives you a great picture of what is going on inside the volcano,” said Steve Chien, principal scientist for autonomous systems at JPL.

Each pod contains

• a seismometer to detect earthquakes

• a GPS receiver to pinpoint the exact location and measure subtle ground deformation

• an infrared sounder to sense volcanic explosions

• a lightning detector to search for ash cloud formation.

The main instrument box is the size and shape of a microwave oven. It sits on top of a three-legged tripod, which is why scientists call them spiders. The pods are powered by batteries that can last for at least a year.

“With these high-tech instruments, we can rapidly respond during periods of volcanic unrest to supplement our permanent monitoring network or quickly replace damaged stations without excessive exposure to personnel,” said Rick LaHusen, an instrumentation engineer with the U.S. Geological Survey’s Cascades Volcano Observatory, Vancouver, WA.

In 1980, a tremendous eruption at Mount St. Helens caused considerable loss of life and damage. More recently, in 2004, the volcano came back to life and erupted more than 100 million cubic meters (26 billion gallons) of lava, accompanied by a series of explosions that hurled rock and ash far from the vent. If eruptions like these ever occur again, a sensor network could be quickly put in place to provide valuable real-time information to scientists and emergency services.

This work is part of NASA’s plan to develop a sensor web to provide timely data and analyses for scientific research, natural hazard mitigation and the exploration of other planets in this solar system and beyond.

“We hope this network will provide a blueprint for future networks to be installed on many of the world’s unmonitored active volcanoes, so educated and reliable estimates can be made when a town or a village needs to be evacuated to reduce the risk to life and property,” said Project Manager Sharon Kedar of JPL.

Chien said, “Hostile environments like Mount St. Helens are proving grounds for future space missions, such as to Mars, where we may someday have similar sensor networks to track a meteor strike, dust storm or Mars quake, as a virtual scientist on the ground.”

Song said, “The design and deployment experiences will help us understand challenging environments and inspire new discoveries.”

A team of engineers, students, volcanologists and geologists put the system together. The team includes the U.S. Geological Survey’s Cascades Volcano Observatory staff, who designed and built the “spider” hardware; Washington State University in Vancouver, where the sensor network software was written; and NASA, which developed software to make the spiders able to detect events to trigger space observations by the EO-1 satellite.

For more information on Volcano sensor networks see: http://ai.jpl.nasa.gov/public/projects/sensorweb. 

The work is funded by NASA’s Earth Science Technology Office through the Advanced Information System Technology program and also by the USGS Volcano Hazards Program. JPL is managed for NASA by the California Institute of Technology in Pasadena.

Related Articles Read More >

From solar system simulations to SaaS savings, how Codeium’s AI agent empowers non-coders and scientists alike
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Quantum Brilliance, Pawsey integrate room-temp quantum with HPC on NVIDIA GH200
Frontier supercomputer reveals new detail in nuclear structure
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE