Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Robots Working as a Group are Able to Determine the Optimal Order of Their Tasks

By Université Libre De Bruxelles | July 19, 2018

Could robots soon help rescue crews save the survivors of a natural disaster? Such a mission would require that the robots be able to determine, on their own, which tasks to perform and in what order to perform them; for instance, there is no use attempting to pull a victim out of rubble if the rubble has not yet been cleared. Currently, engineers are responsible for programming the sequence of actions. But this could soon change!

Mauro Birattari and Lorenzo Garattoni, researchers at the IRIDIA laboratory (Brussels School of Engineering, Université Libre de Bruxelles), have recently shown that robots are able to collectively decide in what order they should complete their tasks. The results of their research are published in Science Robotics this Wednesday, July 18.

The researchers from the IRIDIA laboratory have based their study on swarm robotics, a branch of robotics that draws from the collective and organised behaviour of social animals (such as ants) in order to create groups of robots that exhibit artificial intelligence. Robots are currently able to communicate and coordinate in order to make decisions and carry out simple tasks, such as moving an object or picking one of two paths. For their latest research, Mauro Birattari and Lorenzo Garattoni have taken it one step further in terms of complexity: they have created a swarm of robots that is able to perform a sequence of three actions, without knowing the correct order in advance. In practice, the robots were required to move to three different points in space, where they were to perform a simple task. Only after the tasks were completed would the robots learn whether the order was correct. In order to solve this problem, some of the robots gradually form a chain between the three points in space, which the others use as a guide as they test the various possible combinations by following instructions from the robots who make up the chain (see photo). Eventually, they determine the correct sequence by working together.

This study demonstrates, for the first time, that robots are able to collectively determine a sequence of actions whose required order was previously unknown. This ability to plan ahead is considered to be a complex cognitive skill, and it emerges from the interactions between the individuals in the group: together, the robots are able to plan a sequence of actions, which no individual in the group would be able to do alone.

This research paves the way to a number of potential applications involving a group of ‘smart’ robots, i.e. robots that can solve problems on their own. The possibilities that the researchers anticipate include searching for survivors after a natural disaster, exploring unknown or hostile environments, building structures on dangerous sites, and various applications in agriculture. The ability–demonstrated in this study–to autonomously determine the order in which tasks should be completed is essential for these types of missions.

Mauro Birattari is laureate of an ERC Consolidator Grant. This research was leaded for the ERC project “DEMIURGE: automatic design of robot swarms”.

Related Articles Read More >

Dinner plate-sized chips with trillions of transistors could give traditional GPUs a run for their money
FDA’s AI tool Elsa signals new era for regulatory review, says QuantHealth CEO
Sonar Screen For Submarines And Ships. Radar Sonar With Object On Map. Futuristic HUD Navigation monitor
Pentagon places big bets on frontier AI, quantum sensing and next-gen avionics in nearly $3 billion in defense technology contracts 
This month in AI research: June 2025 sees reports of $100M salary offers, advanced models defying shutdown and IBM’s quantum leap
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE