Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Scientists make molecular chains hypersensitive to magnetic fields

By R&D Editors | July 8, 2013

A conducting-probe atomic force microscope (CP-AFM) measures the electrical conduction of  aromatic molecules, DXP, aligned within the channels of a zeolite crystal on top of a conducting substrate. The entrapped molecules are all aligned along the zeolite channel axis, forming perfectly one-dimensional molecular wires.Researchers of MESA+, the research institute for nanotechnology of the Univ. of Twente, in cooperation with researchers of the Univ. of Strasbourg and Eindhoven Univ. of Technology, are the first to successfully create perfect 1-D molecular wires of which the electrical conductivity can almost entirely be suppressed by a weak magnetic field at room temperature. The underlying mechanism is possibly closely related to the biological compass used by some migratory birds to find their bearings in the geomagnetic field. This spectacular discovery may lead to radically new magnetic field sensors, for smartphones for example. Science published the research results.

In their experiments, the researchers made use of DXP, the organic molecule which is a red dye of the same type as once used by Ferrari for their famous Testarossa. In order to thread the molecules so that they form 1-D chains of 30 to 100 nanometers in length, they applied a smart trick: They locked the molecules in zeolite crystals. Zeolites are porous minerals composed of silicon, aluminum and oxygen atoms with narrow channels, like the lift shafts in a block of flats. The diameter of the channels in the zeolites is only 1 nanometer, just a little wider than the molecule’s diameter. This enabled the researchers to create chains of aligned molecules inside the zeolite channel, which are only 1 molecule wide.

Molecular electric wires
The zeolite crystals containing the molecular wires were then placed on an electricity-conductive substrate. By placing a very sharp conductive needle, of an atomic force microscope (AFM), on top of a zeolite crystal, the researchers were able to measure the electrical conductivity in the molecule chains. Prof. Wilfred van der Wiel, who developed and led the experiment, says that measuring the electrical conductivity in these molecular electric wires is a unique result in itself.

“But the behavior of these wires is simply spectacular when applying a magnetic field,” he adds. This is because electrical conductivity nearly completely breaks down in a magnetic field of just a few milliteslas in size, a field which you could easily generate with a refrigerator magnet. Van der Wiel: “The fact that the effect is so dramatic and occurs even in small magnetic fields at room temperature makes this result very special.”

Single-lane road

Zeolite L is an electrically insulating aluminosilicate crystalline system, which consists of many channels running through the whole crystal and oriented parallel to the cylinder axis. The geometrical constraints of the zeolite host structure allow for the formation of one-dimensional chains of highly uniaxially oriented molecules.The change in electrical resistance through a magnetic field is called magnetoresistance and is very important in technology. It is also used in hard disk read heads. Usually, magnetic materials are indispensable for creating magnetoresistance. However, the ultra-high magnetoresistance which has been measured in Twente was achieved without any magnetic materials. The researchers ascribe this effect to the interaction between the electrons carrying electricity and the magnetic field which is generated by the surrounding atomic nuclei in the organic molecules. Current suppression in a small magnetic field can ultimately be traced back to the famous Pauli exclusion principle, the quantum mechanical principle that states that no two electrons (fermions) may have identical quantum numbers. Since the electric wires are essentially one-dimensional, the effect of the Pauli exclusion principle is dramatic, comparable to an accident on a single-lane road that brings traffic to a standstill. This interpretation is supported by calculations.

Migratory birds
The mechanism that is responsible for ultra-high magnetoresistance in molecular wires is possibly closely related to the biological compass used by some migratory birds to find their bearings in the geomagnetic field. Researchers of the Univ. of Twente are conducting follow-up experiments in the hope to be able to shed more light on this analogy.

Ultrahigh Magnetoresistance at Room Temperature in Molecular Wires

Source: University of Twente

Related Articles Read More >

World’s first Microhub makes spatial context accessible for all
Thermo Scientific Centrios HX offers precise circuit edit solution for fast prototyping
R&D 100 of the day: The Neutron and Gamma Ray Source Localization and Mapping Platform 2.0
JEOL’s new Scanning Electron Microscope has “Simple SEM” automation and live elemental and 3D Analysis
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars