Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Scientists produce first ever atom-by-atom simulation of ALD nanoscale film growth

By R&D Editors | February 5, 2014

Researchers at Tyndall National Institute, Ireland, have produced the first ever atom-by-atom simulation of nanoscale film growth by atomic layer deposition (ALD)—a thin-film technology used in the production of silicon chips.

Present in all electronic devices such as credit cards, mobile phones and computers, each chip is made up of multiple thin layers that provide different functions.  ALD has a key role to play in the manufacture of chips with ever thinner layers for the next generation of electronic devices.  Growth simulations could help to improve the ALD process, but until now, were not accurate enough over experimental timescales.

Similarly, while quantum mechanical simulations give an accurate atom-by-atom picture of individual ALD reactions at the tiniest scales, this is still far removed from what can be measured in the lab—until now. The Tyndall group led by Dr Simon Elliott has for the first time combined the accuracy from the quantum mechanical level with the statistics needed to follow how thousands of atoms react millions of times a second, building up layers of material, as in the lab.

Mahdi Shirazi, who will be awarded a PhD for this work, explains what set his research apart: “It was crucial to model the complete set of all ALD reactions; hundreds of them, at the quantum mechanical level and then carefully extract the information that was needed for the growth simulations.”

Thus, for the first time, we see the link between atom-by-atom chemical reactions and the growth of layers of materials.  This opens the way to new and improved ALD processing of materials for electronic chips, but also for catalysts, solar cells and LED lighting.

The simulations were made possible through the computational power of the Irish Centre for High End Computing and the project was funded by Science Foundation Ireland through the FORME strategic research cluster.

Source: Tyndall National Institute

 

Related Articles Read More >

Marine-biodegradable polymer is as strong as nylon
Unilever R&D head lifts lid on AI, robots and beating the ‘grease gap’
First CRISPR-edited spider spins red fluorescent silk
KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE