Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Scientists rig hospital-grade lightweight blood flow imager on the cheap

By R&D Editors | September 27, 2013

A laser pointer (top right) illuminates a microfluidic flow phantom (bottom center) and the speckle pattern is imaged onto a webcam (top center) to enable calculation of flow images. Images: Andrew Dunn, University of Texas at AustinTracking blood flow in the laboratory is an important tool for studying ailments like migraines or strokes and designing new ways to address them. Blood flow is also routinely measured in the clinic, and laser speckle contrast imaging (LSCI) is one way of measuring these changes; however, this technique requires professional-grade imaging equipment, which limits its use. Now, using $90 worth of off-the-shelf commercial parts including a webcam and a laser pointer, researchers at the University of Texas at Austin (UT-Austin) have duplicated the performance of expensive, scientific-grade LSCI instruments at a fraction of the cost. The work is the first to show that it is possible to make a reliable blood flow imaging system solely with inexpensive parts, the authors say. The researchers describe their development in the latest issue of the Optical Society’s (OSA) journal Biomedical Optics Express.

“We demonstrate that the high cost of standard systems is unnecessary, because a system that costs $90 can give equivalent results for both in vitro and in vivo imaging applications,” said biomedical engineer Andrew Dunn, an associate professor and Dornberger Centennial Fellow in Engineering at UT-Austin and an author of the study.

Measuring blood flow changes using LSCI requires just a few parts—laser light to illuminate the tissue, a camera to record the image, and focusing optics to direct the scattered light to the camera—but at least one of them usually comes with a lofty price tag. The laser light reflects or scatters off the tissue and interferes with itself to create the speckle pattern collected by the camera. This speckle pattern provides a way to visualize the flow of blood within the tissue: areas with a high flow rate show up in the resulting image as blurrier speckles, which can be measured by their lower contrast. Together, all the parts can add up to as much as $5,000.

Unlike past attempts to create a cheaper speckle imager, the UT-Austin team’s new method uses only inexpensive pieces of equipment. A $5 laser pointer is used to illuminate the patch of tissue to be imaged. Light is reflected off the tissue and focused by a pair of generic 40-mm camera lenses onto the sensor of a $35 webcam. The team used their setup to image changes in blood flow in a mouse model and found that they were able to identify areas of high flow versus low flow.

At just 5.6 cm in length and weighing only 25 g, the system is compact and lightweight, which would make it easier to transport for imaging applications outside of the lab, including clinics in areas with limited access to medical care, Dunn said.

The webcam setup (right) is just about as effective as the more expensive CCD camera setup (left) at showing the reduction in blood flow following a stroke. The green circle shows the stroke’s affected area.Currently, the new system’s field of view, which is just a few square millimeters across, and resolution are limited by the size of the webcam sensor, but future versions could have a more flexible layout.

“The lens configuration could be easily adjusted to visualize even smaller structures by magnifying or to visualize larger structures by increasing the field of view, depending on what kind of flow the user is interested in visualizing,” Dunn said.

Low-cost laser speckle contrast imaging of blood flow using a webcam

Source: Optical Society of America

Related Articles Read More >

Lab automation is “vaporizing”: Why the hottest innovation is invisible
Maryland set for first subsea internet cable: AWS’s 320+ Tbps “Fastnet” to Ireland
Google on how AI will extend researchers
2025 R&D layoffs tracker: hardware and chips lead the year’s biggest cuts while biopharma pares pipelines
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE