Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Scientists stitch up photosynthetic megacomplex

By R&D Editors | December 2, 2013

The photosynthetic megacomplex from a cyanobacterium, which scientists have managed to isolate in its complete, functioning form, weighs about 6 million Daltons. It has three parts: on top is a light-harvesting antenna complex called a phycobilisome that captures and funnels the energy in sunlight to two reaction centers, Photosystem II (the complex protruding beneath the antenna) and Photosystem I (the complexes to either side of Photosystem II). The megacomplex is embedded in a membrane shown as a green carpet. Click the image above for a larger version. Image: Haijun LiuWhen sunlight strikes a photosynthesizing organism, energy flashes between proteins just beneath its surface until it is trapped as separated electric charges. Improbable as it may seem, these tiny hits of energy eventually power the growth and movement of all plants and animals. They are literally the sparks of life.

The three clumps of protein—a light-harvesting antenna called a phycobilisome and photosystems I and II—look like random scrawls in illustrations, but this is misleading. They are able to do their job only because they are positioned with exquisite precision.

If the distances between proteins were too great or the transfers too slow, the energy would be wasted and—ultimately—all entropy-defying assemblages like plants and animals would fall to dust.

But until now, scientists weren’t even sure the three complexes cohered as a single sun-worshipping megacomplex. Previous attempts to isolate connected complexes failed because the weak links that held them together broke, and the megacomplex fell apart.

In Science, scientists at Washington Univ. in St. Louis report on a new technique that finally allows the megacomplex to be plucked out entire and examined as a functioning whole.

Like a seamstress basting together the pieces of a dress, the scientists chemically linked the proteins in the megacomplex. Stabilized by the stitches, or crosslinks, it was isolated in its complete, fully functional form and subjected to the full array of instruments in their state-of-the-art laboratories, including tandem mass spectrometers and ultrafast lasers.

The work was done at the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the U.S. Dept. of Energy. PARC is focused on developing the scientific groundwork needed to maximize photosynthetic efficiency in living organisms and to design biohybrid or synthetic photosynthetic devices to drive chemical processes or generate photocurrent.

Robert Blankenship, PhD, PARC’s director and the Lucille P. Markey Distinguished Prof. of Arts & Sciences, said that one outcome of the work in the long term might be the ability to double or triple the efficiency of crop plants—now stuck at a woeful 1 to 3%. “We will need such a boost to feed the 9 or 10 billion people predicted to be alive by 2050,” he said.

Wizards of the laboratory
The scientists worked with the model organism often used to study photosynthesis, a cyanobacterium, or blue-green alga.

Cyanobacteria are ancient organisms, known from fossils that are 3.5 billion years old, nearly as old as the oldest known rocks, and thought to be the first organisms to release oxygen into the noxious primitive atmosphere.

All photosynthesizing organisms have light-harvesting anntenas made up of many molecules that absorb light and transfer the excitation energy to reaction centers, where it is stored as charge separation.

In free-living cyanobacteria, the antenna, called a phycobilisome, consists of splayed rods made up of disks of proteins containing intensely colored bilin pigments. The antenna sits directly above one reaction center, Photosystem II, and kitty-corner to the other, Photosystem I.

PARC research scientist Haijun Liu, PhD, proposed stitching together the megacomplex and then engineering a strain of cyanobacteria that has a tag on the bottom of Photosystem II.

The mutant cells were treated with reagents that stitched together the complexes, then broken open, and the tag was used to pull out Photosystem II and anything attached to it.

To figure out how the proteins were interconnected, the scientists repeatedly cut or shattered them, analyzing the bits by mass spectrometry down to the level of the individual amino acid. 

The amino acid sequences derived in this way then were compared to known sequences within the megacomplex to locate the crosslinks. The links between different complexes helped establish the overall structure of the megacomplex.

“It’s a very complicated data analysis routine that literally generates tens of thousands of peptides that took a team of students and postdoctoral associates, overseen by Hao Zhang and Michael Gross, months to analyze,” Blankenship said. Hao Zhang, PhD, is a PARC research scientist, and Michael Gross, PhD, is prof. of chemistry and director of the Mass Spectrometry Resource in Arts & Sciences.

In the meantime, research scientist Dariusz Niedzwiedzki, PhD, in the PARC Ultrafast Laser Facility, was exciting the phycobilisome in intact megacomplexes and tracking the energy through the complex by the faint glow of fluorescing molecules.

Typical energy transfers within the complex take place in a picosecond, way too fast for humans to perceive. If one picosecond were a second, a second would last 31,700 years.

“PARC is one of the only places in the world that has available this sophisticated combination of experience and advanced techniques,” said Blankenship, “and to solve this problem, we brought all of our expertise to bear.

“The work provides a new level of understanding of the organization of these photosynthetic membranes,and that is something that a lot of people have tried to understand for a long time,” he said.

“It also introduces the methodology of the crosslinking and then the mass spectrometry analysis that could potentially be applicable to a lot of other complexes, not just photosynthetic ones,” he said.

“For example, enzymes in some metabolic pathways have long been thought to form supercomplexes that channel the products of one reaction directly to the next one. This technique might finally allow channeling supercomplexes to be identified in cases where the complex is only very weakly associated,” he said.

Source: Washington Univ., St. Louis

Related Articles Read More >

Sandia
Sandia Truman Fellows advance quantum optics from lab to wafer-scale and field applications
Sandia National Laboratories’ Kenneth Armijo, project lead, stands beside the Sandia Molten Salt Test Loop, the world’s largest lab-scale molten salt testing facility. (Photo by David Lienemann)
Sandia to restart molten-salt test loop with $2.5 million DOE funding
2025 R&D layoffs tracker tops 92,000
Efficiency first: Sandia’s new director balances AI drive with deterrent work
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE