Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Simple test can indicate cervical cancer

By R&D Editors | January 9, 2014

Researchers at the Univ. of Louisville have confirmed that using the heat profile from a person’s blood, called a plasma thermogram, can serve as an indicator for the presence or absence of cervical cancer, including the stage of cancer.

The team, led by Nichola Garbett, PhD, published its findings online in PLOS ONE.

“We’ve been able to demonstrate a more convenient, less intrusive test for detecting and staging cervical cancer,” Garbett said. “Additionally, other research has shown that we’re able to demonstrate if the current treatment is effective so that clinicians will be able to better tailor care for each patient.”

To generate a plasma thermogram, a blood plasma sample is melted, producing a unique signature indicating a person’s health status. This signature represents the major proteins in blood plasma, measured by differential scanning calorimetry (DSC). The team has demonstrated that the plasma thermogram profile varies when a person has or doesn’t have the disease. The team believes that molecules associated with the presence of disease, called biomarkers, can affect the thermogram of someone with cervical disease. They used mass spectrometry to show that biomarkers associated with cervical cancer existed in the plasma.

“The key isn’t the actual melting temperature of the thermogram, but the shape of the heat profile,” Garbett said. “We have been able to establish thermograms for a number of diseases. Comparing blood samples of patients who are being screened or treated against those thermograms should enable us to better monitor patients as they are undergoing treatment and follow up. This will be a chance for us to adjust treatments so they are more effective.”

Chaires noted that plasma thermograms have different patterns associated with different demographics, as well as for different diseases. This results in a more thorough application of the test as a person’s thermogram can be compared to specific demographic reference profiles or, even better, to the person’s own profile. Using a person’s unique thermogram would provide the most accurate application of the test which could be used as part of a personalized medicine approach.

Further clinical study could result in the plasma thermogram as a compliment test to the traditional screening method for cervical cancer, the Pap smear and would be less intrusive and more convenient for the patient. Additionally, because the plasma thermogram test could allow treatment effectiveness to be more easily monitored, treatment that was not working could be stopped sooner and replaced with more effective treatment. In summary, the test could result in earlier detection, more effective therapeutic approaches and lowered health care costs for screening and treatment of cervical cancer.

The Univ. of Louisville researchers see great promise for their technique being able to detect and monitor in a range of other cancers and diseases. The test is noninvasive and requires only a simple blood draw. The plasma thermogram test has already been applied to identify multiple cancers, including melanoma, lung, cervical, ovarian, endometrial and uterine cancers, and other diseases, including lupus, rheumatoid arthritis, Lou Gehrig’s disease and Lyme disease. The test has shown great promise as a prognostic indicator of disease, allowing physicians to monitor cancer patients more closely for remission, response to therapy and recurrence.

As a result of the promising research findings, Garbett, Chaires and Jenson have founded a startup company, Louisville Bioscience Inc. (LBIdx), which holds an exclusive license to the Univ. of Louisville’s Plasma Thermogram (pT) technology.

Source: Univ. of Louisville

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE