Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Simulations of metal-sulfide alloy unlocks secrets to solar-powered catalysts

By R&D Editors | September 26, 2012

Partnerships can pay off when it comes to converting solar into chemical energy. By modeling a cadmium sulfide (CdS)–zinc sulfide (ZnS) alloy with special computational techniques, a Singapore-based research team has identified the key photocatalytic properties that enable this chemical duo to ‘split’ water molecules into a fuel, hydrogen gas (H2). The theoretical study was published by Jianwei Zheng from Singapore’s A*STAR Institute of High Performance Computing and his co-workers.

Chemists had already identified CdS and ZnS semiconductors as promising photocatalysts for water splitting. However, both came with a drawback related to the size of their so-called ‘band gap’—the energy difference between occupied and unoccupied electronic states that determine photo-activity. While CdS can readily harvest solar energy because of its small band gap, it needs a metal co-catalyst to produce H2. On the other hand, ZnS requires high-energy ultraviolet light to initiate water splitting owing to its large band gap.

Recently chemists had overcome these problems by alloying CdS and ZnS together into a ‘solid solution’: a physical state where Zn ions are distributed homogenously inside the crystal lattice of CdS. Altering the proportion of ZnS in these alloys enables production of photocatalysts with tunable responses to visible light and high H2 evolution rates in water. Improving the design of a Cd–ZnS solid solution is difficult, because its underlying mechanism is poorly understood.

As a workaround, Zheng and his co-workers used a technique known as ‘special quasi-random structures’ (SQS) to mimic a completely random alloy with a series of small, periodic models. After carefully working to correlate experimental random hexagonal crystals with their SQS approximations, they calculated the electronic properties of the Cd–ZnS solid solution using hybrid density functional theory—a computational method that gives accurate descriptions of band gaps. When the researchers gradually increased the Zn content of their model alloy, they saw that the band gap deviated from a linear combination of the two components. This effect, known as band ‘bowing’, arises from volume deformations within the Cd–ZnS solid solution and is an essential parameter for predicting catalytic solar H2 production.

Further calculations revealed that the alloy’s high catalytic activity stemmed from obvious elevation of the position of unoccupied electronic states, and a subtle change in the position of occupied electronic states, as the amount of Zn increased. But to retain strong light harvesting capabilities and to avoid premature corrosion, the team proposes an equal ratio of ZnS to CdS for optimal photocatalytic water splitting. 

Hybrid functionals study of band bowing, band edges and electronic structures of Cd1–xZnxS solid solution

Source: Agency for Science, Technology and Research

Related Articles Read More >

New flexible plastic without ‘forever’ chemicals for wearable electronics
SandboxAQ’s SAIR dataset turns 5.2 M protein‑ligand structures into ground‑truth fuel for AI
Marine-biodegradable polymer is as strong as nylon
Unilever R&D head lifts lid on AI, robots and beating the ‘grease gap’
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE