Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Single-Photon Emitter Has Promise for Quantum Info-Processing

By Los Alamos National Laboratory | August 1, 2017

Los Alamos National Laboratory researchers have produced the first known material capable of single-photon emission at room temperature and at telecommunications wavelengths, using chemically functionalized carbon nanotubes. Credit: Los Alamos National Laboratory

Los Alamos National Laboratory has produced the first known material capable of single-photon emission at room temperature and at telecommunications wavelengths. These carbon nanotube quantum light emitters may be important for optically-based quantum information processing and information security, while also being of significant interest for ultrasensitive sensing, metrology and imaging needs, and as photon sources for fundamental advances in quantum optics studies. The research was reported in the journal Nature Photonics.

“By chemically modifying the nanotube surface to controllably introduce light-emitting defects, we have developed carbon nanotubes as a single photon source, working toward implementing defect-state quantum emitters operating at room temperature and demonstrating their function in technologically useful wavelengths,” said Stephen Doorn, leader of the project at Los Alamos and a member of the Center for Integrated Nanotechnologies (CINT). “Ideally, a single photon emitter will provide both room-temperature operation and emission at telecom wavelengths, but this has remained an elusive goal. Up to now, materials that could act as single photon emitters in these wavelengths had to be cooled to liquid helium temperatures, rendering them much less useful for ultimate applications or scientific purposes,” he said.

A critical breakthrough in the CINT nanotube work was the ability of the team to force the nanotube to emit light from a single point along the tube, only at a defect site. The key was to limit defect levels to one per tube. One tube, one defect, one photon. . . . By emitting light only one photon at a time, one can then control the photons’ quantum properties for storage, manipulation and transmission of information.

The CINT researchers were able to attain this degree of control using diazonium-based chemistry, a process they used to bind an organic molecule to the nanotube’s surface to serve as the defect. The diazonium reaction chemistry allowed a controllable introduction of benzene-based defects with reduced sensitivity to natural fluctuations in the surrounding environment. Importantly, the versatility of the diazonium chemistry also permitted the researchers to access the inherent tunability of nanotube emission wavelengths.

The wavelengths (or color) of the photons produced in most other approaches had been too short for telecommunications applications, where photons need to be efficiently manipulated and transported within optical circuits. The team found that by choosing a nanotube of appropriate diameter, the single photon emission could be tuned to the essential telecom wavelength region.

The functionalized carbon nanotubes have significant prospects for further development, Doorn noted, including advances in functionalization chemistry; integration into photonic, plasmonic and metamaterials structures for further control of quantum emission properties; and implementation into electrically driven devices and optical circuitry for diverse applications.

SOURCE: Los Alamos National Laboratory

Related Articles Read More >

Maryland set for first subsea internet cable: AWS’s 320+ Tbps “Fastnet” to Ireland
Google on how AI will extend researchers
2025 R&D layoffs tracker: hardware and chips lead the year’s biggest cuts while biopharma pares pipelines
TOKYO, JAPAN - OCTOBER 2, 2016: Detail from Apple shop in Tokyo, Japan. Apple is American multinational corporation founded at 1976 at Cupertino, California.
iPhone 17 Pro, rumored to add vapor-chamber cooling and a 48MP telephoto, is tracking a September launch
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE