Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Smart Capsule Delivers Drugs Straight to Organs

By R&D Editors | July 15, 2015

A new "smart capsule" under development could deliver medications directly to the large intestines to target certain medical conditions. The prototype is about as large as a 000-size gelatin capsule. Image: Purdue University photo/Babak ZiaieA new “smart capsule” under development could deliver medications directly to the large intestines to target certain medical conditions.

“Usually, when you take medication it is absorbed in the stomach and small intestine before making it to the large intestine,” says Babak Ziaie, a professor of electrical and computer engineering at Purdue University. “However, there are many medications that you would like to deliver specifically to the large intestine, and a smart capsule is an ideal targeted-delivery vehicle for this.”

Such an innovation might be used to treat of irritable bowel syndrome, Crohn’s disease, and a potentially life-threatening bacterial infection called Clostridium difficile in which the body loses natural microorganisms needed to fight infection.

Findings are detailed in a research paper that appeared online and will be published in a future print issue of the Institute of Electrical and Electronics Engineers (IEEE) Transactions on Biomedical Engineering. The paper was authored by graduate students Wuyang Yu, Rahim Rahimi, and Manuel Ochoa; Rodolfo Pinal, an associate professor of industrial and physical pharmacy; and Ziaie.

People are sometimes treated for C. difficile by transplanting feces from another person into the patient’s large intestine, which provides vital microbes. However, it might be possible to convert the microbes into a powder through freeze-drying and deliver them with smart capsules instead, Ziaie says.

Researchers tested the smart capsule with a “fluidic model” that mimics the gastrointestinal tract and also using an experiment that recreates the changing acidity and peristalsis of the stomach and intestines as food passes through the digestive system.

“It takes up to 12 hours to get to the large intestine, so we wanted to make sure the smart capsule can withstand conditions in the gastrointestinal tract,” Ziaie says.

The capsule is powered by a capacitor that is charged before use. A switch inside the capsule is activated by a magnet that could be worn on the patient’s waist. As the capsule meanders through the intestines it eventually comes close to the magnet, activating the switch and releasing a spring-loaded mechanism that opens the capsule, which delivers the medication.

The prototype capsule is about the same size as a 000-size gelatin capsule and is designed to release the powdered medication just before reaching the ileocecal valve, where the small and large intestines meet.

The researchers have filed for a provisional U.S. patent through Purdue’s Office of Technology Commercialization of the Purdue Research Foundation.

The research is ongoing and is based at Purdue’s Birck Nanotechnology Center. Future work may involve human patients.

Release Date: July 14, 2015
Source: Purdue University 

Related Articles Read More >

The 2025 R&D 100 Finalists are here
New nanotechnology method increases microalgae biofuel yield by 300%
New nanopore sensor paves the way for fast, accurate, low-cost DNA sequencing
Floating solar mats clean polluted water — and generate power
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2025 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Sign up for R&D World’s newsletter
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • 2025 R&D 100 Award Winners
    • 2025 Professional Award Winners
    • 2025 Special Recognition Winners
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
    • Content submission guidelines for R&D World
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE