Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Snake Eyes—New Insights into Visual Adaptations

By Oxford University Press | August 17, 2016

Snakes have adapted their vision to hunt their prey day or night. For example, snakes that need good eyesight to hunt during the day have eye lenses that act as sunglasses, filtering out ultraviolet light and sharpening their vision while nocturnal snakes have lenses that allow ultraviolet light through, helping them to see in the dark.

New insights into the relationship between ultraviolet (UV) filters and hunting methods in snakes is one of the findings of the first major study of visual pigment genes and lenses in snakes– published in the advanced online edition of Molecular Biology and Evolution.

The new research was an international collaboration between snake biologists and vision experts led by the David Gower and included fellow Natural History Museum researchers Bruno Simões and Filipa Sampaio. Much of the research, including most of the DNA analyses, was carried out in the Museum’s laboratories.

Please follow R&D Magazine on LinkedIn

Scientists have long known that snakes have highly variable sets of rods and cones – the specialised cells in the retina that an animal uses to detect light. But until now, most modern studies of vision in vertebrates (animals with a backbone) have concentrated on mammals, birds and fish.

To see in different colors, animals use visual pigments in their rods and cones that are sensitive to different wavelengths of light. The researchers examined the genes involved in producing the pigments from a broad genomic survey of 69 different species of snakes. What they found was as the genes vary from species to species so does the exact molecular structure of the pigments and the wavelengths of light they absorb.

The new research discovered that most snakes possess three visual pigments and are likely dichromatic in daylight – seeing two primary colours rather than the three that most humans see.

However, it also discovered that snake visual pigment genes have undergone a great amount of adaptation, including many changes to the wavelengths of light that the pigments are sensitive to, in order to suit the diversity of lifestyles that snakes have evolved.

Most snakes examined in the new study are sensitive to UV light, which likely allows them to see well in low light conditions. For light to reach the retina and be absorbed by the pigments, it first travels through the lens of the eye. Snakes with UV-sensitive visual pigments therefore have lenses that let UV light though.

In contrast, the research showed that those snakes that rely on their eyesight to hunt in the daytime, such as the gliding golden tree snake Chrysopelea ornata and the Monypellier snake Malpolon monspessulanus, have lenses that block UV light. As well as perhaps helping to protect their eyes from damage, this likely helps sharpen their sight – in the same way that skiers’ yellow goggles cut out some blue light and improve contrast.

Moreover, these snakes with UV-filtering lenses have tuned the pigments in their retina so that they are no longer sensitive to the short UV light, but absorb longer wavelengths.

All nocturnal species examined (such as N America’s glossy snake Arizona elegans) were found to have lenses that do not filter UV. Some snake species active in daylight also lack a UV-filtering lens, perhaps because they are less reliant on very sharp vision or live in places without very bright light.

By analysing how the pigments have evolved in snakes, the new study concluded also that the most recent ancestor of all living snakes had UV sensitive vision. “The precise nature of the ancestral snake is contentious, but the evidence from vision is consistent with the idea that it was adapted to living in low light conditions on land,” said corresponding author Gower.

Related Articles Read More >

professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
Health-related innovation in Morocco highlighted by resident inventor patenting activity
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE