Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Solar Scientists Rough up Silicon Panels to Boost Light Capture

By Osaka University | July 26, 2017

Developed technology for prevention of recombination of photo-generated carriers in the nanocrystalline silicon layer.

Osaka University research team modifies the surface texture of both the front and back of silicon solar cells to cheaply enhance light harvesting and boost power conversion efficiency

Osaka, Japan – Power generation cost using solar panels depends on getting as much electricity out of the panels as possible while keeping the manufacturing costs low. Anyone who has considered installing solar panels might be aware of the trade-off between efficiency and the initial cost of the panels. Engineers and researchers are finding new ways to obtain power out of solar modules, but doing so without adding to their costs is becoming more and more difficult.

Now a team of scientists at Osaka University has taken a step closer to making inexpensive solar cells that can deliver the same high efficiency as more complex and expensive cells.

“Unmodified silicon solar cells throw away light energy in the form of reflection, so most solar cells have some kind of antireflective coating,” explains first author Daichi Irishika. “To avoid using these extra coatings we fabricated a submicron structure using a simple wet treatment directly into the silicon surfaces to give the cell its own antireflective coating.”

Antireflective coatings, similar to those used on reading glasses, can help to get more light into solar cells and boost their electricity output. However, these coatings are expensive to produce, especially for covering large areas.

The Osaka team has previously made low reflection silicon cells using a much cheaper process based on the surface structure chemical transfer (SSCT) method to fabricate so-called black silicon. Chemically treating the front side of silicon cells produces tiny submicron silicon structures, which prevent light reflection and give a black appearance. The team has also developed a method to passivate the submicron silicon structures with huge surface area to prevent the recombination loss by deposition of phosphosilicate glass followed by heat treatment. This method can simultaneously form pn-junction to separate photo-generated electrons and holes, and therefore, it isn’t an additional process.

Building on their previous success, the Osaka team turned their attention to the back side of the silicon cells and created rougher light-trapping microstructures to capture even more infrared light.

Group leader Hikaru Kobayashi says, “Making very high efficiency solar cells is important but we should also consider the economics and practicality of any processes used to increase efficiency. The wet processes we have developed are simple yet effective, and our work with black silicon has real-world applications in making cost-effective silicon solar panels.”

Related Articles Read More >

2025 R&D layoffs tracker tops 92,000
Efficiency first: Sandia’s new director balances AI drive with deterrent work
Ex-Google CEO details massive AI energy needs at House hearing, advocates for fusion and SMR R&D
Floating solar mats clean polluted water — and generate power
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE