Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Speeding up electronics to light frequencies

By R&D Editors | December 16, 2012

Measurement of electric currents induced by the electric field of light The proof-of-principle study of Schiffrin et al. was performed on a small silica-glass prism, coated on two sides with gold electrodes with a 50 nm wide gap in between. In order to investigate the field-induced electric current the scientists exposed the sample to the strong few-cycle field of a pulse for "mobilizing" electrons and then drove the mobilized electrons towards one of the two electrodes with the field of a time-delayed second (weaker) laser pulse. Varying the delay of the second pulse with respect to the first pulse results in a current in the external circuit with varying direction. The current turns around each time the delay is increased by half the oscillation period of the laser field, indicating that "mobilisation" must occur within a time window of a femtosecond. Credit: Christian Hackenberger, LMUModern information processing allows for breathtaking switching rates of about a 100 billion cycles per second. New results from the Laboratory for Attosecond Physics (LAP) of Prof. Ferenc Krausz (Max Planck Institute of Quantum Optics (MPQ), Garching, and Ludwig-Maximilians-Universität Munich) could pave the way towards signal processing several orders of magnitude faster. In two groundbreaking complementary experiments a collaboration led by LAP-physicists has demonstrated that, under certain conditions, ultrashort light pulses of extremely high intensity can induce electric currents in otherwise insulating dielectric materials.

Furthermore, they provided evidence that the fast oscillations of the electric field instantly alter the electrical and optical properties of the material, and that these changes can be reversed on a femtosecond (10-15 s) time scale. This opens the door for signal processing rates reaching the petahertz (1015 Hz) domain, about 10,000 times faster than it is possible with the best state-of-the-art solid state microchips. The experiments were carried out by researchers from MPQ, LMU, and Technische Universität München, in close cooperation with the theoretical group of Prof. Mark Stockman (Georgia State University, Atlanta, USA).

Materials can be grouped in three categories according to their electric properties: metals provide free charge carriers, i.e. electrons, under any conditions, and therefore conduct electricity when exposed to even small electric fields. In semiconductors, on the other hand, the charge carriers require a certain “energy kick” before they are able to move around. This is why semiconductors are very well suited as the basic material for electronic switching components in which the digits “0” and “1” are represented by an “on” or “off” current, respectively. The best silicon-based semiconductor components available today allow switching between these two states several billion times per second, i.e. at gigahertz-rates (1 GHz = 109 Hz). This corresponds to the frequency of microwaves.

The third group of materials are so-called dielectrics. Here, the electrons are more or less immobile, therefore, dielectrics are insulators under normal conditions; at very low electric fields they don’t conduct electric current, whereas at high static fields they suffer irreversible damage. The team of Prof. Krausz now took interest in the question of how such materials would respond to very high and (usually) destructive fields that act on it for just a tiny moment. To this way they used a special tool: very short and intensive laser pulses of visible/near-infrared light with a duration of a few femtoseconds (1 fs is a millionth of a billionth of a second), which contain only a couple of cycles with a perfectly controlled waveform. In these pulses, the amplitude of the oscillating electric field increases from moderate values to more than 10 billion V per meter extremely rapidly, within a few femtoseconds.

In the first experiment the scientists investigated whether these light pulses would cause dielectrics to conduct electric currents at all. Their test object was a small silica-glass prism, coated on two sides with gold electrodes with a 50 nm wide gap in between. After irradiating the prism with the intense few-femtosecond pulses, an electric current was measured between the electrodes.

“Two effects are contributing to this result,” Tim Paasch-Colberg explains, who worked on this experiment as a doctoral candidate. “On the one hand the strong electric field of one pulse enhances the mobility of the electrons. On the other hand, the appropriately directed weaker field of a second pulse pushes the mobilised electrons towards the gold electrodes.”

The experiments revealed that the electric current changes its direction as the weak (driving) field is delayed by half a wave period (about 1.2 fs) with respect to the strong (mobilizing) field (see figure 1).

“This behavior is a strong indication that the material is turned from an insulator into a conductor by the strong light field within less than a femtosecond,” Tim Paasch-Colberg says. “However, from these observations we cannot yet conclude that the conductivity can also be switched off within the same time scale, which is a precondition for the effect being utilized for signal processing.”

Attosecond real-time observation of changes in the electronic properties of a dielectric induced by the oscillating field of light A nanometric thin silica-glass film (black frame in the centre of picture) is exposed to intense few-femto-second light pulses (red). The strong field of the light pulse changes the electronic states in the glass, with each cycle of its oscillation. These variations are tracked in real time by a series of "snapshots" recorded by attosecond light pulses (blue) passed through the sample at different instants delayed with respect to the intense excitation pulse. The recorded attosecond snaps of the instantaneous state of the electronic system of the probed sample; from these snaps the field-induced changes can be reconstructed in "slow-motion replay". Credit: Thorsten Naeser, LMUTo answer this question, a second experiment explored the underlying electronic processes. This time, the material, in form of a thin film, was exposed to the same pulses. The extremely fast variations of the electronic properties caused by the strong field were tracked in real time with LAP’s unique tool: flashes of extreme ultraviolet light shorter than 100 attoseconds (1 as is a billionth of a billionth of a second, a thousand times shorter than a femtosecond) (see figure 2).

“Our results show that the field-induced changes follow, in a highly nonlinear fashion, both the turn-on and the turn-off behaviour of the driving laser field, and thus they clearly point to the reversibility of the field-induced effects,” Elisabeth Bothschafter, doctoral candidate at the experiment, explains.

And Dr. Martin Schultze, leading these experiments and currently on leave at the University of California at Berkeley, adds: “It is stunning that basic material properties can be manipulated, increased and decreased, at the speed of light field oscillations.”

Both sets of experiments can be described with one and the same microscopic model developed by Vadym Apalkov and Mark Stockman, which explains—based on quantum mechanics—the underlying physical processes and supports the conclusion of full reversibility of the observed light-induced changes.

“Our work demonstrates how state-of-the-art photonic techniques may explore ways of pushing the frontiers of information processing,” says Agustin Schiffrin, leading the first project and currently researcher at the University of British Columbia (Vancouver, Canada).

Professor Krausz, head of the Laboratory for Attosecond Physics, likes to put these measurements into a larger context: “We hope that these results provide motivation for other groups worldwide to join us in exploring and exploiting the potential wide-gap materials may offer for speeding up electronics.”

Source: Max Planck Institute

Related Articles Read More >

First CRISPR-edited spider spins red fluorescent silk
KIST carbon nanotube supercapacitor holds capacity after 100,000 cycles
A new wave of metalworking lets semiconductor crystals bend and stretch
LLNL deposits quantum dots on corrugated IR chips in a single step
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE