Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Statistical Approach Will Help Researchers Better Determine Cause-Effect

By R&D Editors | June 22, 2016

A common problem with some scientific research, particularly projects studying human health, is that it is often difficult, if not impossible, to prove that a specific action directly causes an effect. For example, scientists have found that those who smoke cigarettes also are more likely to suffer from depression. However, scientists cannot uniquely determine whether smoking directly causes depressive symptoms, or if those with depression are more likely to cause health damaging behaviors, including smoking.

Now, Wolfgang Wiedermann, a quantitative psychology and assistant professor in the University of Missouri College of Education, and Alexander von Eye, a quantitative methodologist at Michigan State University, have developed a new statistical technique that can help scientists determine causation of effects they are studying. Wiedermann says this method can help scientists advance research that otherwise would stall out in its early phases.

“It is a limitation of observational studies, such as the smoking and depression example, that scientists can only find links and correlations between actions and effects,” Wiedermann said. “Often, this is due to ethical boundaries scientists face. It would be unethical to ask nonsmokers to start smoking to see if depressive symptoms appear, which would be the only true way to determine a causation. This new statistical approach can help provide scientists a direction, or cause, in their research instead of only finding links or correlations.”

In a series of six recently published papers, Wiedermann and von Eye illustrated the effectiveness of their approach by applying observational data from studies performed by other scientists. One such study featured data finding a correlation between children with Attention Deficit Hyperactivity Disorder (ADHD) and high levels of lead in the blood. Ethically, scientists could not inject children with lead in order to determine if it caused ADHD symptoms to appear, so the most specific finding their research could prove was simply a link between the two conditions. Wiedermann and von Eye applied this data to his statistical model and was able to determine a direction from the research: that high levels of lead in the blood may cause ADHD symptoms in children.

In another example, Wiedermann and von Eye found support for hierarchical stages of development in how children learn and process numbers and mathematics. Wiedermann says this new technique determines this by examining distributional characteristics of data, such as asymmetry in variable distributions.

“It is a modern myth that all datasets sit on symmetrical, normally distributed bell curves,” Wiedermann said. “In reality, every dataset for every study has some level of ‘non-normality.’ Taking distributional characteristics into account leads to situations where two variables cannot be exchanged in their status as cause and effect without systematically violating assumptions of the model. These systematic violations can be used to identify whether an action or condition causes a certain effect (high lead-blood levels causing ADHD) from large enough sample sizes of observational data. This could be an important tool for scientists to use in furthering their research. Ethical boundaries in scientific experiments certainly always will remain, thus we should start working on pushing the limits of what we can learn from observational data.”

Wiedermann and von Eye’s six studies were published in the British Journal of Mathematical and Statistical Psychology, the Journal of Person-Oriented Research, Educational and Psychological Measurement, Multivariate Behavioral Research, the International Journal of Behavioral Development and Psychological Methods. In a recently published volume “Statistics and Causality: Methods for Applied Empirical Research” edited by Wiedermann and von Eye, the current state of affairs in direction dependence methodology is presented. Wiedermann and von Eye present their methods in the metric and categorical data domains, other researchers from all over the world present modeling approaches that are related to direction dependence, and leading philosophers discuss the relation of these methods to philosophical accounts of causality.

Related Articles Read More >

Eli Lilly facility
9 R&D developments this week: Lilly builds major R&D center, Stratolaunch tests hypersonic craft, IBM chief urges AI R&D funding
professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE