Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

“Sticky tape” for water droplets mimics rose petal

By R&D Editors | September 17, 2013

Researchers in Australia have invented a platform to synthesize polymeric “raspberry” particles and explore their use to fabricate surfaces with low wettability and high water adhesion, resembling the properties of naturally occurring surfaces such as the rose petal.A new nanostructured material with applications that could include reducing condensation in airplane cabins and enabling certain medical tests without the need for high tech laboratories has been developed by researchers at the Univ. of Sydney.

“The newly discovered material uses raspberry particles—so-called because of their appearance—which can trap tiny water droplets and prevent them from rolling off surfaces, even when that surface is turned upside down,” said Dr. Andrew Telford from the university’s School of Chemistry and lead author of the research recently published in the journal, Chemistry of Materials.

The ability to immobilize very small droplets on a surface is, according to Dr Telford, a significant achievement with innumerable potential applications.

Raspberry particles mimic the surface structure of some rose petals.

“Water droplets bead up in a spherical shape on top of rose petals,” Telford said. “This is a sign the flower is highly water repellent.”

The reasons for this are complex and largely due to the special structure of the rose petal’s surface. The research team replicated the rose petal by assembling raspberry particles in the lab using spherical micro- and nanoparticles.

The result is that water droplets bead up when placed on films of the raspberry particles and they’re not able to drip down from it, even when turned upside down.

“Raspberry particle films can be described as sticky tape for water droplets,” Telford said.

This could be useful in preventing condensation issues in airplane cabins. It could also help rapidly process simple medical tests on free-standing droplets, with the potential for very high turnover of tests with inexpensive equipment and in remote areas.

Other exciting applications are under study: if we use this nanotechnology to control how a surface is structured we can influence how it will interact with water.

“This means we will be able to design a surface that does whatever you need it to do.

“We could also design a surface that stays dry forever, never needs cleaning or able to repel bacteria or even prevent mould and fungi growth.

“We could then tweak the same structure by changing its composition so it forces water to spread very quickly.

“This could be used on quick-dry walls and roofs which would also help to cool down houses.

“This can only be achieved with a very clear understanding of the science behind the chemical properties and construction of the surface,” he said.

The discovery is also potentially viable commercially.

“Our team’s discovery is the first that allows for the preparation of raspberry particles on an industrial scale and we are now in a position where we can prepare large quantities of these particles without the need to build special plants or equipment,” Telford said.

The other research team members and journal authors are Associate Professor Brian Hawkett and Dr Chiara Neto, both from the School of Chemistry and Dr Chris Such from Dulux Australia, that supported the research through an Australian Research Council Linkage Project grant.

Mimicking the Wettability of the Rose Petal using Self-assembly of Waterborne Polymer Particles

Source: Univ. of Sydney

Related Articles Read More >

R&D winner of the day: Monolithic Fiber Array Launcher
R&D collaborations looking to build expertise, in this week’s R&D power index
Invention addresses the problems of running a red light at traffic intersections
Liberty Defense airport shoe screening technology earns prestigious national award
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars