Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Students build carbon nanostructures in hypergravity

By R&D Editors | May 7, 2014

GRAVARC experiment set-up before integration in one of the LDC gondolas.A Spin Your Thesis! experiment, sponsored for students by the European Space Agency (ESA), has shown that carbon nanomaterials are built differently under conditions of hypergravity. These results are useful for understanding the synthesis of carbon nanostructures and the behaviour of gliding arc discharges.

The GRAVARC experiment is headed by two PhD students from Masaryk Univ., Czech Republic. It studies the behavior of a gliding arc electrical discharge under different levels of gravity.

The experiment was performed on the Large Diameter Centrifuge, located at ESA’s ESTEC facility in the Netherlands. The 8-m-wide centrifuge is capable of simulating anything up to 20 times the pull of Earth’s gravity.

In the GRAVARC apparatus, the gliding electrical arc is formed between two diverging electrodes. It starts at the smallest distance between the electrodes and glides along towards the wider part. When the maximum lengths of the gliding arc is reached, the discharge will be quenched and the cycle repeated. The purpose of the team’s experiment was to study the effect of gravity on the shape, intensity, colour and emission spectra of the discharge.

They also wanted to study the effect of the carbon nano material that was produced in the discharge. “This was totally curiosity-driven research,” says team member Jiri Sperka, “There has been a lot of research into electrical arcs but not so much into gliding arcs.”

They discovered that the arc glided faster in conditions of higher levels of gravity. Arcing can occur in technological systems such as those found on aeroplanes and spacecraft. Knowing the conditions that start the arc, and how it will develop once it has started could be a very important safety concern.

GRAVARC student operating their hypergravity experiment.Also, during launches, there is so much acceleration required to lift a spacecraft into orbit that different gravitational conditions prevail. Experiments such as GRAVARC can show how gliding electrical arcs behave in such situations.

The team is now working on computer models to describe the behavior of the gliding arc. This is a challenging task because the plasma from the arc mingles with the surrounding gas, creating a complex mixture.

The second part of the experiment was to study the nanostructures built in the gas surrounding the arc. This happens because the arc heats up the gas, turning it into a plasma in which electron particles are removed from the atoms. By embedding the electrodes in methane-rich gas this promotes the formation of carbon nanostructures.

Such methods are widespread in the synthetic production of carbon nanomaterials. The team investigated whether higher gravity affected the process. They found that there was a distinct change in the structures that were built at 1g , 6g and 15g. Both surface growth and volume growth were observed at the higher gravity levels.

The team has published these results in a paper in Materials Research Bulletin and are now incorporating them into their PhD theses.

“It was a very special opportunity to perform an experiment at such an amazing facility,” says Sperka.

Source: European Space Agency

 

Related Articles Read More >

New Ultrathin Capacitor Could Enable Energy-Efficient Microchips
Advanced fluoropolymer materials excel in harsh oil recovery environments
R&D 100 winner of the day: RFID Yarn: Overcomer for 5 Major Durability Test
R&D 100 of the day: Autonomous Self-Healing Sealant
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2021 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars