Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Study: Gases work with particles to promote cloud formation

By R&D Editors | February 5, 2013

undefined

click to enlarge
 
Using the GEOS-CHEM (top) and NASA-GMI (bottom) global climate models, the researchers showed that predictions of cloud droplet numbers could increase up to 20% due to organic gas adsorption.   

Researchers at Columbia University and the Georgia Institute of Technology have published a study online in the Proceedings of the National Academy of Sciences (PNAS) showing, for the first time, that certain volatile organic gases can promote cloud formation in a way never considered before by atmospheric scientists.

“This is the first time gases have been shown to affect cloud formation in this way,” says V. Faye McNeill, associate professor in chemical engineering at Columbia University’s Fu Foundation School for Engineering and Applied Science, and co-leader of the research team. “This is a very exciting finding that will improve our ability to model cloud formation, an important component of climate.”

The research team, co-led by Athanasios Nenes, professor and Georgia Power Faculty Scholar in the School of Earth and Atmospheric Sciences and the School of Chemical and Biomolecular Engineering at Georgia Tech, has been focused on understanding the impacts of aerosols, or airborne particulate matter, on clouds, because clouds have such an significant influence over our climate.

“Low-level clouds cool the planet by reflecting incoming sunlight back to space, so anything that perturbs them can have a major impact on our climate,” explains Nenes, adding that pollution produced by humans releases many airborne particles to the atmosphere which can act as seeds for forming cloud droplets, so clouds formed in polluted air masses have a good chance of being more reflective than their cleaner counterparts.

“Our study,” Nenes says, “shows that certain gas phase compounds tend to stick on particles, making them ‘soapier’ and promoting their ability to form cloud droplets. This mechanism has not been considered in climate models before.”

Clouds form when water vapor condenses on atmospheric particulates called cloud condensation nuclei (CCN). Variations in CCN concentrations, say the researchers, can profoundly impact cloud properties with important effects on both regional and global climate. Organic matter, which makes up a significant percentage of aerosol mass in the troposphere, (the lowest layer of the Earth’s atmosphere and the one in which we live) can profoundly influence the activity and concentration of CCN and cloud droplets.

In this PNAS study, the researchers present evidence that two ubiquitous atmospheric trace gases, methylglyoxal and acetaldehyde, can enhance aerosol CCN activity even if they do not contribute any detectable organic mass when taken up by aerosol particles. The researchers generated aerosol particles in the McNeill Lab and exposed them to the surfactant gases methylglyoxal and/or acetaldehyde in the laboratory’s aerosol reaction chamber for up to five hours.

The exposed particles were then tested for their ability to form cloud droplets using a cloud chamber that was co-invented by the Nenes group. Their results showed the gas-phase surfactants may enhance the activity of atmospheric CCN, so that, as they conclude in the study, “volatile organics in the atmosphere may act as a reservoir of surfactants that can be taken up by aerosol particles and augment their CCN activity.”

McNeill and Nenes plan to do more experimental work with other organic gases under a variety of conditions that will, they say, “help us understand how general this newly discovered phenomenon is, and, most importantly, will enable us to incorporate it into models of cloud formation so we can improve the predictive power of climate models.”

Adds McNeill, “The effects of aerosols on clouds is one of the greatest sources of uncertainty in our understanding of climate, so it’s fun to work on a problem that is both important and intellectually fascinating.”

Source: Georgia Institute of Technology

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
New AI model offers faster, adaptive CO₂ retrieval from satellite data
8 major R&D moves this week: Samsung invests record $24B while Porsche cuts 3,900 jobs
Ex-Google AI team launches “Generation,” an AI-driven fragrance venture
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE