Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Study Opens New Drug Therapy Targets in a Range of Diseases

By The University of Queensland | August 2, 2017

Scientists have a better understanding of the immune system at a molecular level, thanks to University of Queensland-led research that may now lead to a range of new treatments for disease.

The research provides a new foundation for therapeutic strategies against a wide range of diseases and infections, said Professor Bostjan Kobe.

“This study shows for the first time that signalling happens downstream of ‘toll-like receptors’ – proteins that play a key role in the innate immune system,” Professor Kobe said.

“These receptors are a double-edged sword,” he said. “On one hand, they protect us against infection, but they are also responsible for pathological inflammatory responses in a range of disorders from chronic inflammatory, autoimmune, cardiovascular and cancer-related disorders to pathologies associated with infections. For this reason, the associated pathways are important drug targets for a range of diseases.”

Professor Kobe, of the School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, said the signalling assemblies’ structure provided the means to design therapeutic drugs using rational, structure-based approaches.

“These are similar to approaches Australian researchers used to develop the anti-flu drug Relenza,” he said.

Innate immune receptors, particularly toll-like receptors, were discovered only in recent years, Professor Kobe said, with the 2011 Nobel Prize in Physiology or Medicine co-awarded to Bruce Beutler and Jules Hoffmann for their discovery.

“The mechanism of signalling has been a matter of controversy,” he said. “Many incorrect molecular models were proposed over last 15 years, but the data they were based on was too limited. We managed to reconstitute the signalling assembly, determine its structure by using cryo-electron microscopy, and provide conclusive evidence that explains signalling in the cell.”

He added: “This is a rather novel type of signalling we have called SCAF (Signalling by Cooperative Assembly Formation). A large assembly forms very quickly after minimal stimulus, achieving very high amplification very rapidly. This is exactly what’s needed in the first stage of immune response.”

In a report published in the journal Nature Structural and Molecular Biology (DOI tba), the international research team described how the signal is amplified after the membrane receptor senses a pathogen and initiates an inflammatory response.

A National Health and Medical Research Council project grant funded the study.

The international collaborators included the teams of Dr Thomas Ve who started work in Professor Kobe’s lab at UQ and recently moved to Griffith University, Dr Kate Stacey, Dr Michael Landsberg and Dr Mehdi Mobli at UQ, Dr Yann Gambin and Dr Emma Sierecki at the University of New South Wales, and Professor Ed Egelman at the University of Virginia, USA.

Related Articles Read More >

2025 R&D layoffs tracker tops 92,000
Health-related innovation in Morocco highlighted by resident inventor patenting activity
ARPA-H funds $29M Ginkgo-led project to reshore pharma supply chains using wheat germ tech
DNA microscope offers new 3D view of organisms from the inside out
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE