Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Swimmers suits work, but not because of the shark-like surface

By R&D Editors | February 9, 2012

SharkSkin-250

Professor George Lauder has found that the rough surface of shark skin helps reduce drag and increase thrust as the animal swims. Interestingly, the research also tested the high-tech swimsuits and found that their surface (supposedly designed to mimic shark skin) has no effect on swimming speed. “I’m convinced they work, but it’s not because of the surface,” he said of the swimsuits. Kris Snibbe/Harvard Staff Photographer

For
swimmers looking to gain an edge on the competition, the notion that
simply donning a different swimsuit—like a Speedo Fastskin II suit, with
a surface purportedly designed to mimic by shark skin—can be the
difference between first and last place is a powerful one.

   

It’s also one that’s almost completely misplaced, said George Lauder, the Henry Bryant Bigelow Professor of Ichthyology.

   

Experiments conducted in Lauder’s lab, and described in the Feb. 2 issue of The Journal of Experimental Biology,
reveal that, while sharks’ sandpaper-like skin does allow the animals
to swim faster and more efficiently, the surface of the high-tech
swimsuits has no effect when it comes to reducing drag as swimmers move
through the water.

   

“In
fact, it’s nothing like shark skin at all,” Lauder said, of the
swimsuit material. “What we have shown conclusively is that the surface
properties themselves, which the manufacturer has in the past claimed to
be bio-mimetic, don’t do anything for propulsion.”

   

That’s not to say that the suits as a whole do nothing to improve performance.

   

“There
are all sorts of effects at work that aren’t due to the surface,”
Lauder said. “Swimmers who wear these suits are squeezed into them
extremely tightly, so they are very streamlined. They’re so tight could
actually change your circulation, and increase the venous return to the
body, and they are tailored to make it easier to maintain proper posture
even when tired. I’m convinced they work, but it’s not because of the
surface.”

   

By
comparison, Lauder said, the research showed that the millions of
denticles—tiny, tooth-like structures—that make up shark skin have a
dramatic effect on how the animals swim by both reducing drag and
increasing thrust.

   

“What
we found is that as the shark skin membrane moves, there is a
separation of flow—the denticles create a low-pressure zone, called a
leading-edge vortex, as the water moves over the skin,” he said. “You
can imagine this low-pressure area as sucking you forward. The denticles
enhance this leading-edge vortex, so my hypothesis is that these
structures that make up shark skin reduce drag, but I also believe them
to be thrust enhancing.”

   

Importantly,
however, the phenomenon was only found when the skin was attached to a
flexible membrane. When placed on a rigid structure, no increases in
swimming speed were seen.

   

“In
life, sharks are very flexible. Even hammerheads and large ocean sharks
are quite flexible,” Lauder said. “If you watch a shark swim, the head
does not move very much, so it could be that the denticles on the head
are mostly reducing drag, but those on the tail are enhancing thrust,
but we don’t know what that balance may be. Ultimately, though, one of
the key messages of this paper is that shark skin needs to be studied
when they’re moving, which hadn’t been done before.”

   

Studying
how shark’s skin helps them move through the water, however, is no easy
proposition, and one that, for obvious reasons, can’t be done using
live animals.

   

To
perform the tests, Lauder and his team obtained samples of the skin of
two different shark species—mako and porbeagle sharks—and tested them
alongside two other materials, the high-tech swimsuits and a material
that featured tiny grooves, or “riblets”, which has been explored as a
way to cut fuel consumption on aircraft and reduce drag on sailboats.

   

To
conduct the tests, each of the materials was mounted on two forms – one
a rigid, wing-like structure and the other a flexible membrane. Each
was then attached to a robotic arm mounted on a low-friction device
suspended over a recirculating tank. To measure the speed at which the
apparatus “swims,” researchers turned up the flow in the tank until the
device returned to its starting point.

   

Understanding how water flowed over each material, however, was trickier.

   

To
get at the problem, Lauder and his team relied on a technique called
particle image velocimetry which uses a laser to illuminate millions of
reflective particles in the water. Using a high speed camera that
records at up to 1,000 frames per second, researchers can observe how
the particles move and observe where and when vortices form.

   

“I’ve
thought for years that the literature on shark skin needed an upgrade,”
Lauder said, explaining his motivation for the research. “Once we got
going, I thought it would be fun to look at the Speedo materials because
we don’t have a lot of quantitative information on the effect of
surface structure.

   

“Going
forward, we want to try to image the flow as close to the surface as we
can reasonably get,” he continued. “The other direction we are
exploring is to make an artificial shark skin and then manipulate
it—delete every other denticle, make them twice as large, or change the
spacing—and see what effects that may have.”

   

Funding for the research was provided by the National Science Foundation.

The hydrodynamic function of shark skin and two biomimetic applications

SOURCE

Related Articles Read More >

professional photo of wooly mammoth in nature --ar 2:1 --personalize sq85hce --v 6.1 Job ID: 47185eaa-b213-4624-8bee-44f9e882feaa
Why science ethicists are sounding skepticism and alarm on ‘de-extinction’
ALAFIA system speeds complex molecular simulations for University of Miami drug research
3d rendered illustration of the anatomy of a cancer cell
Funding flows to obesity, oncology and immunology: 2024 sales data show where science is paying off
Health-related innovation in Morocco highlighted by resident inventor patenting activity
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE