Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

“Swimming” Particles Lead the Way to Self-Healing, Shape-Changing

By U.S. Department of Energy, Office of Science | October 26, 2017

In a “living” liquid crystal, particles swim along defined lanes. A new predictive computational model suggests a way to trap bacteria or any other active particles within specific areas. Left: Bacteria accumulate (yellow area) behind the core of a T-shaped “+1/2 defect” and deplete (blue) for the Y-shaped “−1/2 defect”. The white arrow indicates the direction of motion of the defect. Center: Experiments confirmed these predictions. The green lines depict the orientation of liquid crystal molecules that act as guides for swimming bacteria (red). Right: A close-up of the area within the blue box demonstrates the validity of the simulation. White lines depict orientations of the T-shaped (red) and Y-shaped (green) defects. The white scale bars represent 50 micrometers. Image: Courtesy of Argonne National Laboratory

“Living” liquid crystals combine the properties of human-made liquid crystals with features of swimming bacteria. Scientists built an accurate model of how the crystals control the motion, transport and position of swimming bacteria. The model can also simulate how other particles behave in the living crystal. Now, scientists can combine the model with on-demand synthesis and the ability to guide defects that direct the bacteria or particles. The result? This work could lead to self-healing and shape-changing materials. The materials could manage complex processes, such as producing power.

This discovery may lead to the design and synthesis of new self-healing materials by controlling defects in living crystals. Also, this work extends the tools needed to, one day, create self-regulating “machines.” These machines can adapt existing components for different purposes as needed or respond to stress without stopping. Finally, this work adds to scientists’ knowledge of out-of-equilibrium systems, which are involved in everything from energy generation to waste site cleanup.

Bird flocks, fish schools, and self-propelling fluid mixtures that cooperatively organize and move in response to internal or external cues are all considered active matter. A new class of active matter, known as “living” liquid crystals, bridge the properties of inanimate and living materials by combining bacteria swimmers and non-toxic liquid crystals. Topological defects in these crystals play a critical role. The defects direct how the crystals are assembled and how the bacteria are transported. Managing the appearance and placement of these defects provides a useful lever for manipulating components and properties.

Scientists from Argonne National Laboratory discovered a novel concept for transporting and trapping microscopic bacteria or human-made swimmers in a liquid crystal. They developed a computational model that accurately reproduces experimental observations of the dynamics of topological defects within the liquid crystal. The model also predicts the accumulation or expulsion of swimmers from the cores of different topological defects. Fluorescent bacteria were suspended in a water-based liquid crystal. Similar to car traffic on highways, bacteria swam along certain directions parallel to the orientation of liquid crystal molecules. Topological defects in the liquid crystals effectively served as road junctions along these highways guiding and concentrating or repelling the swimmers. Directly related to the topology at the defect core, the bacteria accumulated near T-shaped defects where liquid crystal oriented streamlines (or “highways”) and swimmer trajectories converge. For Y-shaped defects, streamlines are organized so that the swimmers either travel away from the core on their own or are deflected away from the core altogether. The accumulation and depletion of swimmers in the cores significantly change defect dynamics. Importantly, the model accurately correlates the reconfiguration of the liquid crystal streamlines and topological defect orientations along with changes in defect population related to the concentration of swimmers.

Source: U.S. Department of Energy, Office of Science

Related Articles Read More >

For the first time, scientists grow beating human-pig hearts for 21 days
Open-source Boltz-2 can speed binding-affinity predictions 1,000-fold
Thermo Fisher’s new Orbitrap Excedion Pro targets complex biotherapeutics for drug development
FDA’s new ‘Elsa’ AI set to expedite clinical protocol reviews
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE