Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Synchronized nanoscale oscillators may spur new devices

By R&D Editors | December 17, 2012

A schematic of two optically coupled, micromechanical oscillators. Each consists of silicon nitride membranes set to a "flapping" oscillation by the force of light. This light force couples the mechanical motion of the oscillators by tunneling through the small gap between them, which eventually leads to their synchronization. Image: Mian Zhang/Cornell Nanophotonics GroupSynchronization phenomena are everywhere in the physical world—from circadian rhythms to side-by-side pendulum clocks coupled mechanically through vibrations in the wall. Cornell University researchers have now demonstrated synchronization at the nanoscale, using only light, not mechanics.

Two tiny mechanical oscillators, suspended just nanometers apart, can talk to each other and synchronize by means of nothing but light, according to new research published in Physical Review Letters.

The work is a collaboration between the research groups of Michal Lipson, associate professor of electrical and computer engineering, and Paul McEuen, the Goldwin Smith Professor of Physics, both members of the Kavli Institute at Cornell for Nanoscale Science. The paper’s first author is Mian Zhang, a graduate student in the field of applied and engineering physics.

Lipson’s group had previously established that the optical properties of a nanoscale silicon nitride structure can be manipulated with light. Zhang and colleagues took this discovery a step further by demonstrating that two distinct micromechanical oscillators placed in a vacuum, each a hair’s width in diameter and spaced 400 nm apart, can be synchronized in both phase and frequency through coupling mediated purely by an optical radiation field.

The researchers demonstrated switching this coupling on and off as well as tuning their frequencies, thanks to established microphotonics techniques that control the optical radiation field, Zhang says.

The robustness of this phenomenon could mean a host of new nanoscale photonic capabilities, say the researchers. For example, they could be used in tuned oscillator networks for sensing, signal processing, and nanoscale integrated circuits.

Source: Cornell University

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE