Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Taking Advantage of Graphene Defects

By R&D Editors | September 25, 2014

The scattering potential in real space calculated based on the Fourier image. © S. KoniakhinNew theoretical model of the effect of triangular defects in graphene provides numerical estimates of the resulting current rectification with potential applications in security screening.

Electronic transport in graphene contributes to its characteristics. Now, a Russian scientist is proposing a new theoretical approach to describe graphene with defects—in the form of artificial triangular holes—resulting in the rectification of the electric current within the material. Specifically, the study provides an analytical and numerical theory of the so-called ratchet effect —which results in a direct current under the action of an oscillating electric field, due to the skew scattering of electronic carriers by coherently oriented defects in the material. These findings are published in EPJ B by Sergei Koniakhin from the Ioffe Physical-Technical Institute and the Academic University – Nanotechnology Research and Education Centre, both affiliated with the Russian Academy of Sciences in St. Petersburg.

The author studied the scattering on various types of triangular defects, including the scattering on a cluster in the shape of a solid triangle. To do so, Koniakhin used a theoretical framework ranging from the scale of the graphene sample – the so-called classical framework—to the atomic level, at the quantum mechanical scale. The study also focuses on the example of scattering on three- point defects placed at the corners of a triangle. The author analyzed symmetric and asymmetric parts of scattering rates of electrons and implemented it into the classical Boltzmann kinetic theory.

The numerical estimation of the current rectification effect resulting from this work has yet to be confirmed experimentally. However the numerical values obtained can directly be compared with future experimental data. Such theoretical studies of graphene with triangular defects could be used in the detection of terahertz radiation, which has applications in security screening detectors. These are based on the photogalvanic effect, which is the appearance of electric current as result of irradiation of a device or sample material by light.

Release Date: September 23, 2014
Source: The European Physical Journal 

Related Articles Read More >

The emerging materials shaping next-generation semiconductor electronics
24 R&D trends that redefined 2024
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 3: The sensor
Graphene-based flowmeter sensor measures nano-rate fluid flows, Part 2: The graphene context
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE