Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Taking the Mathematical Route to Fighting Viruses

By R&D Editors | March 25, 2014

Evidence suggests that viruses assemble within seconds or minutes. A new study has solved a long-standing puzzle of how common viruses reproduce themselves during an infection, opening up new possibilities for treating a range of diseases from HIV to the common cold.

“Levinthal’s Paradox” has perplexed scientists since the late 1960s and is founded on the enormous number of pathways virus particles could theoretically use to assemble themselves into their protective shells. If they used a simple trial and error strategy, it would take many days to form a virus, but all the evidence suggests that they assemble within seconds or minutes.

An experimental team at the University of Leeds and mathematicians at the University of York have developed a mathematical model to explain how RNA viruses solve this enormously complicated “Rubik’s cube” in microseconds or milliseconds.

By incorporating multiple specific contacts between the genomic RNA and the proteins in the virus’s containers, and other details of real virus infections, the research team’s mathematical model demonstrates how these contacts act collectively to reduce the complexity of virus formation.

This process also ensures efficient and selective packaging of the viral genome and has evolved because it provides significant selective advantages to viruses that operate this way.

The mathematical model could open up new opportunities for anti-viral therapies targeting a fundamental process in the formation of a wide range of viruses and could be a significant step in the fight against diseases including HIV, Hepatitis B and C,  the winter vomiting bug Norovirus and the common cold.

“We have already obtained proof of principle in a simple model virus that these functions can be targeted by drugs. The new opportunities for anti-viral intervention opened up by our paper also apply to viruses for which therapeutic options are currently limited. The new approach is enticing because it enables us to target co-operative aspects of viral assembly that are conserved across different viral strains, making it less likely that drug therapy would elicit resistance mutations,” says Prof. Peter Stockley, of the Astbury Centre for Structural Molecular Biology at the University of Leeds.

“This truly interdisciplinary effort has provided surprising insights into a fundamental mechanism in virology. Existing experimental techniques for studying viral assembly are unable to identify the cooperative roles played by all the important components, highlighting the need for and power of mathematical modelling. This model is a paradigm shift in the field of viral assembly. It sheds new light on virus assembly in a major class of viruses and their evolution, and opens up a novel strategy for antiviral therapy,” says Prof. Reidun Twarock, of the Departments of Mathematics and Biology at the University of York, who led the study.

 

Call
Send SMS
Add to Skype
You’ll need Skype CreditFree via Skype

Related Articles Read More >

From solar system simulations to SaaS savings, how Codeium’s AI agent empowers non-coders and scientists alike
Aardvark AI forecasts rival supercomputer simulations while using over 99.9% less compute
Quantum Brilliance, Pawsey integrate room-temp quantum with HPC on NVIDIA GH200
Frontier supercomputer reveals new detail in nuclear structure
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE