Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

The Cold Dust Grains of a Flying Saucer

By R&D Editors | February 3, 2016

The young star 2MASS J16281370-2431391 lies in the spectacular Rho Ophiuchi star formation region, about 400 light-years from Earth. It is surrounded by a disc of gas and dust -- such discs are called protoplanetary discs as they are the early stages in the creation of planetary systems. This particular disc is seen nearly edge-on, and its appearance in visible light pictures has led to its being nicknamed the Flying Saucer.  The main image shows part of the Rho Ophiuchi region and a much enlarged close-up infrared view of the Flying Saucer from the NASA/ESA Hubble Space Telescope is shown as an insert. Credit: Digitized Sky Survey 2/NASA/ESAOn the outskirts of the Rho Ophiuchi cloud complex, which is about 400 light-years from Earth, a Flying Saucer glows.

Okay, the Flying Saucer isn’t a spaceship. It’s a young star officially known as 2MASS J16281370-2431391; its colloquially name is inspired by its appearance in visible pictures. But just because it isn’t an alien spacecraft doesn’t mean something interesting isn’t happening. In fact, an international team of scientists with the European Southern Observatory (ESO) recently glimpsed something they thought was physically impossible. 

Viewing the star’s protoplanetary disk—a collection of gas and dust associated with early planet formation—with the Atacama Large Millimeter/submillimeter Array (ALMA), the researchers observed and imaged the glow emanating from the disk’s carbon monoxide molecules. Surprisingly, the team observed a negative signal.  

“This disk is not observed against a black and empty night sky,” said Stephane Guilloteau, who is the lead author of a Letter to the Editor appearing in Astronomy & Astrophysics. “Instead it’s seen in silhouette in front of the glow of the Rho Ophiuchi Nebula. This diffuse glow is too extended to be detected by ALMA, but the disk absorbs it. The resulting negative signal means that parts of the disk are colder than the background. The Earth is quite literally in the shadow of the Flying Saucer!”

The ALMA data was combined with other observations of the background glow from Spain’s IRAM 30-m telescope. With the two datasets, the researchers discovered the disk dust grain temperature was -266 C, colder than previous temperature models predicted.

“Although dust is the main agent to control the protoplanetary disk temperature, our knowledge of dust temperatures essentially relies on modeling of disk images and (Spectral Energy Distribution),” the researchers write in Astronomy & Astrophysics. “Despite (or even because of) their sophistication, these models suffer from many uncertainties because of the large number of assumed properties: radial distribution, dust grain growth, dust settling, composition and porosity, disk flaring geometry, etc.”

According to the ESO, most current models predict temperatures between -258 and -253 C.

While the researchers haven’t pinpointed the exact reason behind the low temperature, they have a few ideas. One idea postulated is the temperature may depend on the disk’s grain sizes. The larger grains being cooler, and the smaller ones warmer.

“It is too early to be sure,” said coauthor Emmanuel di Folco.

Further observations are needed to understand the role temperature plays in planet formation.   

 

Related Articles Read More >

2025 R&D layoffs tracker: 83,543 and counting
U.S. Space Force invests $13.7 billion in next-gen launch vehicles from SpaceX, ULA, and Blue Origin
EL SEGUNDO, CA/USA - OCTOBER 13, 2014: Boeing manufactuing facility. Boeing manufactures and sells aircraft, rotorcraft, rockets and satellites. It is the second-largest defense contractor in the world.
8 major R&D moves this week: HHS cuts 10,000 jobs while Anthropic & DataBricks form $100M pact
Breathing easier on the moon: NASA and Corscience team up to monitor spacesuit safety
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE