Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

The NASA Breathing Project

By R&D Editors | April 15, 2015

The UT Arlington team researching ways to increase oxygen recovery rates are from left: Krishnan Rajeshwar, distinguished professor of chemistry and biochemistry in the College of Science; Brian Dennis, associate professor of mechanical and aerospace engineering in the College of Engineering; and Norma Tacconi, a research associate professor of chemistry and biochemistry.NASA has selected The University of Texas at Arlington as one of four U.S. institutions to develop improved methods for oxygen recovery and reuse aboard human spacecraft, a technology the agency says is crucial to “enable our human journey to Mars and beyond.” 

NASA’s Game Changing Development Program awarded $513,356 to the UT Arlington team. UT Arlington and three other teams are charged with the goal of increasing oxygen recovery to 75 percent or more.

Principal investigators on the UT Arlington project are Brian Dennis, associate professor of mechanical and aerospace engineering in the College of Engineering; Krishnan Rajeshwar, distinguished professor of chemistry and biochemistry in the College of Science; and Norma Tacconi, a research associate professor of chemistry and biochemistry.

They will design, build and demonstrate a “microfluidic electrochemical reactor” to recover oxygen from carbon dioxide that is extracted from cabin air. The prototype will be built over the next year at the Center for Renewable Energy Science and Technology, CREST, at UT Arlington.

“At the end of this 15 month Phase I project, we will demonstrate the prototype to NASA officials. If we are selected to move to Phase II, we plan to build a full-scale unit. We hope the technology will be flight tested on the International Space Station sometime in the future,” Dennis says. “That’s what we’re really excited about and what we’ll be aiming for.”

Dennis said the design uses water and carbon dioxide as reactants and produces oxygen and hydrocarbon gases, such as methane. The gases can be vented into space and the oxygen is used for breathing.

“We have developed a nanocomposite electrode that speeds oxygen evolution at lower potential. That basically means it can produce more oxygen in a shorter time with less power and less reactor volume,” says Dennis. “This is important since power on a spacecraft is limited because it comes from solar panels and spacecraft capacity also is limited. Things should be as compact and lightweight as possible.”

Current methods of oxygen recovery used on the International Space Station, or ISS, achieve only about a 50 percent recovery rate. A better recovery rate means less oxygen needs to be stored and would free up precious cargo space on prolonged missions. With current technology, a trip to Mars would take about eight months, though scientists are working to shorten that time.

In a statement from NASA, Associate Administrator for Space Technology Michael Gazarak said improving oxygen recovery and designing a system with high reliability is crucial to long-duration human spaceflight.

“These ambitious projects will enable the critical life support systems needed for us to venture further into space and explore the high frontier and are another example of how technology drives exploration,” Gazarak says. NASA’s full announcement is available here: http://www.nasa.gov/press/2014/october/nasa-selects-advanced-oxygen-recovery-proposals-for-spacecraft-missions/#.VDV8RedDRgh.

Dennis said the proposed UT Arlington device has an advantage over the ISS method because not as much water is needed to achieve 75 percent recovery. The team estimates its system would require less water than what can be recovered in one day from a person’s sweat and urine. A water recovery system that converts bodily fluids to water is already at work on the ISS.

For years, Dennis, Rajeshwar and Tacconi have developed novel nanocomposites to be used in targeted electrochemical reactions for fuel cells and other purposes. The new project builds on that work and is another demonstration of the key role electrochemistry can play in technological advances, Tacconi and Rajeshwar say.

James Grover, interim dean of the UT Arlington College of Science, says the new NASA-funded project is a great chance for the College of Science and College of Engineering to make an impact in a field that captures human imagination and inspires innovation.

“Discoveries are cultivated through interdisciplinary collaboration and UT Arlington scientists and engineers have embraced that spirit to achieve advances,” Grover says.

Khosrow Behbehani, dean of the College of Engineering, says the interdisciplinary project speaks to practical aspects of space research.

“This project has great implication for space explorations,” Behbehani says. “Through collaboration of scientists and engineers at UT Arlington such innovations have become possible which can put us closer to exploring farther destinations in space.”

Release Date: April 10, 2015
Source: The University of Texas at Arlington  

 

Related Articles Read More >

Europa’s lost decade: What happens to $5 billion‑plus in planetary R&D when missions die?
Artemis III Orion powers on at Kennedy, marking milestone for 2027 Moon-landing push
MIT’s new sodium fuel cell beats lithium three-to-one for regional aviation
2025 R&D layoffs tracker tops 92,000
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE