Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Thermoelectric capacity doubled with new thin film material

By R&D Editors | March 26, 2014

Researchers from the University of Twente's MESA+ research institute have managed to significantly improve the efficiency of a thermoelectric material. Image: Eric BrinkhorstThermoelectric materials, i.e. materials that are able to convert heat into electricity, have been around for a while. Because they are still not sufficiently efficient, they are currently mainly used in gadgets, such as boots that use body heat to charge a phone. However, if heat could be more efficiently converted into electricity, this would open up possibilities for a wide range of practical applications. Think of materials that are able to convert the heat emitted from a car exhaust-pipe into electricity for an electric motor, factories that convert waste heat into electricity and pacemakers that are charged with the body heat of their carriers.

Doubling the capacity

Thermoelectric materials have unique qualities which are not very common in natural materials. For instance, their electrical conductivity should be as high as possible, whereas their thermal conductivity as low as possible. Researchers from the Univ. of Twente’s MESA+ research institute have managed to greatly improve the efficiency of thin films of the thermoelectric material NaXCoO2. They have managed to double the capacity of thin films of the material by adjusting the fabrication conditions. According to Dr Mark Huijben, one of the researchers involved, the research shows that further improvements can be made.

“Although this concerns fundamental research, it goes to show that it is possible to greatly improve the efficiency of the materials by exercising greater control over the fabrication process. By selecting the right substrate and fabrication conditions, we are able to fine-tune the material to a high degree.”

The researchers worked with thin films of the material of less than 100 nm thick. Huijben: “The next step is to arrange thin layers of different materials on top of each other in order to create new and better qualities.”

Enhanced Thermoelectric Power Factor of NaxCoO2 Thin Films by Structural Engineering

Source: Univ. of Twente

 

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • Educational Assets
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE