Research & Development World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars

Transfer of HIV Between T Cells

By R&D Editors | March 31, 2009

A team of researchers at Mount Sinai School of Medicine and the UC Davis Center for Biophotonics Science and Technology have for the first time captured on video the transfer of human immunodeficiency virus (HIV) from infected to uninfected T cells through structures called virological synapses. The breakthrough study could lead to new methods to block the transmission of HIV.
 
‘Most prior studies of HIV dissemination have focused on free roaming viruses, but this study shows us how direct T cell-to-T cell contact could in fact be the predominant mode of dissemination within the body,’ said Dr. Benjamin Chen, Assistant Professor of Medicine, Infectious Diseases, Mount Sinai School of Medicine.  
 
‘Direct T cell-to-T cell transfer through virological synapses is a highly efficient avenue of HIV infection. Our recent experiments show that the viral structural protein moves with surprising speed in infected cells and that the cell machinery actively participates in the transport of virus between T cells. This suggests there are many targets for interfering with the process,’ said Dr. Chen.
 
In order to make the HIV virus visible to track on video from cell to cell, researchers at Mount Sinai created a molecular clone of infectious HIV that contains green fluorescent jellyfish protein. With the team at UC Davis, they then used quantitative, high-speed 3D video microscopy to record both viral particle formation and transmission of the virus between T cells. 
 
The resulting images and videos show that, once an infected cell adheres to a healthy cell, the HIV proteins – which appear bright green in the study – migrate within minutes to the contact site. At that point, large packets of virus are simultaneously released by the infected cell and internalized by the recipient cell. This efficient mode of transfer is a distinct pathway from the cell-free infection that has been the focus of most prior HIV studies, and reveals another mechanism by which the virus evades immune responses that can neutralize free virus particles within the body.
 
‘We found that the transfer of HIV is highly coordinated between T cells, and that the transfer is rapid and massive,’ said Dr. Chen. ‘Future efforts to block HIV transmission may be designed to specifically exploit and block this cell-to-cell mode of infection.’

To view videos please click here: http://www.dddmag.com/article.aspx?id=15274

Release Date: March 26, 2009
Source: Mount Sinai School of Medicine

Related Articles Read More >

New dangers in the woods — and the hope that research offers us
Novel mass spectrometry solution simplifies insight gathering into macromolecular complexes
ENPICOM launches display solution to accelerate antibody selection while maximizing precision
Thermo Fisher Scientific autoimmune-testing instruments now available in the U.S.
2021 R&D Global Funding Forecast

Need R&D World news in a minute?

We Deliver!
R&D World Enewsletters get you caught up on all the mission critical news you need in research and development. Sign up today.
Enews Signup

R&D World Digital Issues

February 2020 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R& magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • 2022 Global Funding Forecast

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • Home Page
  • Topics
    • Aerospace
    • Archeology
    • Automotive
    • Biotech
    • Chemistry
    • COVID-19
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Market Pulse
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
      • Software
    • Semiconductors
  • 2021 R&D 100 Award Winners
    • R&D 100 Awards
    • 2020 Winners
    • Winner Archive
  • Resources
    • Digital Issues
    • Podcasts
    • Subscribe
  • Global Funding Forecast
  • Webinars