Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Transparent Conductors Spread Like Butter on Toast

By R&D Editors | November 4, 2015

Stanford and SLAC postdoctoral researcher Sean Andrews with an instrument used to spread a thin layer of conductive polymers onto a transparent film with a matchbook-sized silicon blade. The process, called “solution shearing,” was used to make patterned electrodes for a solar cell and a sensor, and shows promise for scaling up for use in industry. Image: SLAC National Accelerator LaboratoryScientists from Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory have shown they can make flexible, transparent electrical conductors with record-high performance for use in solar cells, displays, and other devices by spreading polymers on a clear surface with a tiny blade, like a knife spreading butter on toast.

The technique, reported recently in the Proceedings of the National Academy of Sciences, has already been used to make patterned electrodes for touch sensors and organic solar cells, and with further development could be a tool for manufacturing transparent conductors on a large scale.

“We were able to achieve record-high conductivity with a material people have known for years, just by tuning the coating process,” says Zhenan Bao, a Stanford professor and member of SIMES, the Stanford Institute for Materials and Energy Sciences at SLAC, who led the study. “That shows there’s a lot of room for achieving high performance through controlling the assembly and structure of materials at the molecular scale.”

Bao’s group developed this “solution shearing” technique in close collaboration with Michael Toney and Stefan Mannsfeld, staff scientists at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL), whose teams used X-rays to look at the structures and properties of the finished films.

Transparent conductors are used where it’s important to get light in or out of a device, such as in solar cells, electromagnetic shielding, antistatic layers and lighting displays. Today these conductors are mostly made with indium tin oxide, or ITO. But ITO is expensive to work with, and it isn’t compatible with the flexible displays being developed for a new generation of TV screens, computers and other electronics.

“There’s a huge drive in industry to create things that are transparent, inexpensive, conduct well, and are made from abundant materials,” says Mannsfeld, who is now a professor at the Dresden University of Technology.

So, scientists have been exploring alternatives. In this study they turned to PEDOT:PSS, a conductive blend of two polymers that turns transparent as it dries. It’s also much cheaper and more flexible than ITO.

A matchbook-sized silicon blade spread a thin layer of PEDOT:PSS on various surfaces — including glass, silicon, and PET, a clear polyester resin used in beverage containers — at speeds up to 6 meters per minute. By varying the speed and adjusting the temperature of this process, the researchers were able to produce see-through films of various thickness and conductivity, and also get the PEDOT and PSS polymers to separate into layers, which increased the film’s conductivity even more. The best films they made beat the existing conductivity record for PEDOT:PSS.

Next they used the method to create working electrodes: First they printed electronic circuit patterns on a glass surface with a chip manufacturing technique called photolithography. Then they spread the polymer mix over the surface with the blade. The conductive polymers stuck to the patterned areas but not to the bare glass, creating circuits where electrical currents can travel. The resulting electrodes were tested and found to work in solar cells and touch sensors.

“Solution shearing is still an experimental technique, but it’s becoming more common as a way to deposit these polymeric materials,” says Sean Andrews, a postdoctoral researcher who carried out the bulk of the experiments with former postdoc Brian Worfolk, now a scientist with Phillips 66. “We’re looking for ways to increase the performance of these films with methods that can be scaled up for industrial manufacturing.”

He said the team continues to carry out X-ray studies to find out exactly why spreading the polymers with a blade — which stretches them out along one direction and arranges the molecules in different ways as they dry — makes them more conductive, so they can control and take advantage of the process to make even better transparent conductors.

In earlier studies, the research team used variations of the technique to test better ways to manufacture high-quality semiconductors and solar cells. Their solution shearing apparatus was set up with funding from a SLAC Laboratory Directed Research and Development grant. The research was also supported by the DOE’s Energy Efficiency and Renewable Energy (EERE) BRIDGE program, which aims to significantly lower the cost of solar energy systems; the Stanford Global Climate and Energy Program; Stanford’s Tomkat Center for Sustainable Energy; and the National Science Foundation. Parts of the study were carried out at SSRL, which is a DOE Office of Science User Facility.

Release Date: November 2, 2015
Source: SLAC National Accelerator Laboratory 

Related Articles Read More >

IoT
Sensor data, reimagined: When 90% less data can fuel 100x gains in efficiency in AI projects
Sandia Labs joins with other institutions to tackle AI energy challenges with microelectronics research
LG
Stretchable batteries and body-conformable electronics poised to advance in 2025
Critical Spaces Control Platform
Phoenix Critical Spaces Control Platform uses automation to direct airflow
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE