Research & Development World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE

Tsunami on a Chip Harnesses Catastrophic Events

By R&D Editors | March 10, 2015

Andrea Fratalocchi led a team of researchers from KAUST and European universities and research centers to develop a chip capable of generating nanoscale rogue waves.Can you imagine how much energy is in a tsunami wave, or in a tornado? Energy is all around us, but mainly contained in a quiet state. But there are moments in time when large amounts of energy build up spontaneously and create rare phenomena on a potentially disastrous scale. How these events occur, in many cases, is still a mystery.

To reveal the natural mechanisms behind such high-energy phenomena, Andrea Fratalocchi, assistant professor in the Computer, Electrical and Mathematical Science and Engineering Division of King Abdullah University of Science and Technology (KAUST), led a team of researchers from Saudi Arabia and three European universities and research centers to understand the dynamics of such destructive events and control their formation in new optical chips, which can open various technological applications. The results and implications of this study are published in the journal Nature Physics.

“I have always been fascinated by the unpredictability of nature,” Fratalocchi says. “And I believe that understanding this complexity is the next frontier that will open cutting edge pathways in science and offer novel applications in a variety of areas.”
Fratalocchi’s team began their research by developing new theoretical ideas to explain the formation of rare energetic natural events such as rogue waves — large surface waves that develop spontaneously in deep water and represent a potential risk for vessels and open-ocean oil platforms.”

“Our idea was something never tested before,” Fratalocchi continues. “We wanted to demonstrate that small perturbations of a chaotic sea of interacting waves could, contrary to intuition, control the formation of rare events of exceptional amplitude.”
A planar photonic crystal chip, fabricated at the University of St. Andrews and tested at the FOM institute AMOLF in the Amsterdam Science Park, was used to generate ultrafast (163 fs long) and subwavelength (203 nm wide) nanoscale rogue waves, proving that Fratalocchi’s theory was correct. The newly developed photonic chip offered an exceptional level of controllability over these rare events.

Thomas F. Krauss, head of the Photonics Group and Nanocentre Cleanroom at the University of York in the U.K., was involved in the development of the experiment and the analysis of the data. He says, “By realizing a sea of interacting waves on a photonic chip, we were able study the formation of rare high energy events in a controlled environment. We noted that these events only happened when some sets of waves were missing, which is one of the key insights our study.”

Fully experimental image of a nanoscaled and ultrafast optical rogue wave retrieved by Near-field Scanning Optical Microscope (NSOM). The flow lines visible in the image represent the direction of light energy.Kobus Kuipers, head of nanophotonics at FOM institute AMOLF, NL, who was involved in the experimental visualization of the rogue waves, was fascinated by their dynamics: “We have developed a microscope that allows us to visualize optical behavior at the nanoscale. Unlike conventional wave behavior, it was remarkable to see the rogue waves suddenly appear, seemingly out of nowhere, and then disappear again…as if they had never been there.”

Andrea Di Falco, leader of the Synthetic Optics group at the University of St. Andrews, says, “The advantage of using light confined in an optical chip is that we can control very carefully how the energy in a chaotic system is dissipated, giving rise to these rare and extreme events. It is as if we were able to produce a determined amount of waves of unusual height in a small lake, just by accurately landscaping its coasts and controlling the size and number of its emissaries.”

The outcomes of this project offer leading edge technological applications in energy research, high speed communication and in disaster preparedness.

Fratalocchi and the team believe their research represents a major milestone for KAUST and for the field. “This discovery can change once and for all the way we look at catastrophic events,” concludes Fratalocchi, “opening new perspectives in preventing their destructive appearance on large scales, or using their unique power for ideating new applications at the nanoscale.”

The title of the Nature Physics paper is “Triggering extreme events at the nanoscale in photonic seas.” The paper is accessible on the Nature Photonics website.

Release Date: March 10, 2015
Source: King Abdullah University of Science and Technology  

Related Articles Read More >

Floating solar mats clean polluted water — and generate power
Nanodots enable fine-tuned light emission for sharper displays and faster quantum devices
New photon-avalanching nanoparticles could enable next-generation optical computers
New “nose-computer interface” aims to upgrade Rover’s nose for better drug detection methods
rd newsletter
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, trends, and strategies in Research & Development.
RD 25 Power Index

R&D World Digital Issues

Fall 2024 issue

Browse the most current issue of R&D World and back issues in an easy to use high quality format. Clip, share and download with the leading R&D magazine today.

Research & Development World
  • Subscribe to R&D World Magazine
  • Enews Sign Up
  • Contact Us
  • About Us
  • Drug Discovery & Development
  • Pharmaceutical Processing
  • Global Funding Forecast

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search R&D World

  • R&D World Home
  • Topics
    • Aerospace
    • Automotive
    • Biotech
    • Careers
    • Chemistry
    • Environment
    • Energy
    • Life Science
    • Material Science
    • R&D Management
    • Physics
  • Technology
    • 3D Printing
    • A.I./Robotics
    • Software
    • Battery Technology
    • Controlled Environments
      • Cleanrooms
      • Graphene
      • Lasers
      • Regulations/Standards
      • Sensors
    • Imaging
    • Nanotechnology
    • Scientific Computing
      • Big Data
      • HPC/Supercomputing
      • Informatics
      • Security
    • Semiconductors
  • R&D Market Pulse
  • R&D 100
    • Call for Nominations: The 2025 R&D 100 Awards
    • R&D 100 Awards Event
    • R&D 100 Submissions
    • Winner Archive
    • Explore the 2024 R&D 100 award winners and finalists
  • Resources
    • Research Reports
    • Digital Issues
    • R&D Index
    • Subscribe
    • Video
    • Webinars
  • Global Funding Forecast
  • Top Labs
  • Advertise
  • SUBSCRIBE